9.如圖所示,在光滑的水平面上有兩塊完全相同的足夠長的木板A和B,它們的質(zhì)量均為MA=MB=$\frac{M}{2}$,先讓長木板A在光滑水平地面上以速度2υ0勻速運動,與靜止的長木板B發(fā)生完全非彈性碰撞.設(shè)碰撞時間極短,碰撞結(jié)束后A、B做為一個整體沿水平方向向右運動.在運動的前方,沿著長木板運動方向相距一定距離站著序號標有1、2、3、…、n的人,每人手中各拿著與長木板間的動摩擦因數(shù)均為μ質(zhì)量均為m的物塊,各物塊在長木板上發(fā)生相對滑動時,會留下一條“劃痕”當長木板運動到第一個人的身旁時,第一個人將手中的物塊無初速地輕放在長木板的最前端.當長木板運動到第二個人身旁時,第一塊物塊恰好相對長木板靜止,第二個人將手中的物塊放置在長木板的最前端.當長木板運動到第三個人身旁時,第二塊物塊恰好相對長木板靜止,第三個人將手中的物塊放罝在長木板的最前端.…依此類推,當前個人放置的物塊相對長木板靜止時,第n個人就將手中的物塊放置在長木板的最前墑.(各物塊之間不會相互碰撞) 求:
(1)在AB碰撞過程中,產(chǎn)生了多少熱量?
(2)第一個人與第二個人相距多遠?
(3)這n個物塊相對木板均靜止時,長木板上的劃癍之和為多少?

分析 (1)在AB碰撞過程中,遵守動量守恒定律,由此求出碰后兩者的共同速度.再由能量守恒定律求產(chǎn)生的熱量.
(2)第一個人與第二個人相距等于第一塊物塊木板上滑行的過程中木板滑行的距離,由動量守恒定律和動能定理結(jié)合求解.
(3)再由動量守恒定律和能量守恒定律結(jié)合求長木板上的劃痕之和.

解答 解:(1)在AB碰撞過程中,取向右為正方向,由動量守恒定律得:
   $\frac{M}{2}$×2v0=($\frac{M}{2}$+$\frac{M}{2}$)v
由能量守恒定律得:
$\frac{1}{2}$×$\frac{M}{2}$×(2v02=$\frac{1}{2}$($\frac{M}{2}$+$\frac{M}{2}$)v2+Q
聯(lián)立解得:Q=$\frac{1}{2}M{v}_{0}^{2}$
(2)第一塊物塊在木板上滑動的過程,取向右為正方向,由動量守恒定律得:
Mv0=(M+m)v1
對木板,由動能定理得:
$\frac{1}{2}$Mv12-$\frac{1}{2}$Mv02=-μmgL1
可得,第一個人與第二個人相距為:L1=$\frac{M(2M+m){v}_{0}^{2}}{2μ(M+m)^{2}g}$
(3)以n個物塊和A、B組成的系統(tǒng)為研究對象,對整個過程,由動量守恒定律得:
Mv0=(M+nm)v2
由能量守恒定律得:
$\frac{1}{2}$Mv02=$\frac{1}{2}$(M+nm)v22+μmgx
解得長木板上的劃痕之和為:
x=$\frac{nM{v}_{0}^{2}}{2μ(M+nm)g}$
答:(1)在AB碰撞過程中,產(chǎn)生了$\frac{1}{2}M{v}_{0}^{2}$熱量.
(2)第一個人與第二個人相距為$\frac{M(2M+m){v}_{0}^{2}}{2μ(M+m)^{2}g}$.
(3)這n個物塊相對木板均靜止時,長木板上的劃痕之和為$\frac{nM{v}_{0}^{2}}{2μ(M+nm)g}$.

點評 本題要明確非彈性碰撞和相對滑行的過程中,系統(tǒng)遵守的基本規(guī)律是:動量守恒定律和能量守恒定律.要知道摩擦產(chǎn)生的熱量與相對位移有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:作圖題

19.如圖所示為三個有界勻強磁場,磁感應(yīng)強度大小均為B,方向分別垂直紙面向外、向里和向外,磁場寬度均為L,在磁場區(qū)域的左側(cè)邊界處有一邊長為L的正方形導(dǎo)體線框,總電阻為R,且線框平面與磁場方向垂直.現(xiàn)用外力F使線框以速度v勻速穿過磁場區(qū)域,以初始位置為計時起點,規(guī)定外力F向右為正.畫出外力F隨時間變化規(guī)律的圖象

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

20.對開普勒第三定律$\frac{{a}^{3}}{{T}^{2}}$=k,以下理解正確的是( 。
A.a代表行星運動的軌道半徑B.k是一個與行星有關(guān)的常量
C.T代表行星運動的自轉(zhuǎn)周期D.T代表行星運動的公轉(zhuǎn)周期

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

17.一切阻力均不計,斜向上拋出的金屬球在空中的運動軌跡如圖中虛線所示,下列各圖中畫出的金屬球速度方向和受力方向正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.如圖所示,A為靜止于地球赤道上的物體,B為繞地球做橢圓軌道運行的衛(wèi)星,C為赤道平面內(nèi)繞地球做勻速圓周運動的衛(wèi)星,P為B、C兩衛(wèi)星運行軌道的交點.已知A、B、C繞地心運動的周期相等,下列說法正確的是( 。
A.衛(wèi)星B為地球同步衛(wèi)星
B.衛(wèi)星C為地球同步衛(wèi)星
C.衛(wèi)星C與物體A的角速度相等
D.衛(wèi)星B與衛(wèi)星C在P點時的加速度不相等

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

5.如圖所示,邊長為L的正方形閉合導(dǎo)線框置于磁感應(yīng)強度為B的勻強磁場中,線框平面與磁感線的方向垂直.用力將線框分別以速度v1和v2勻速拉出磁場,比較這兩個過程,以下判斷正確的是( 。
A.若v1>v2,通過線框?qū)Ь的電荷量q1>q2
B.若v1>v2,拉力F1<F2
C.若v1=2v2,拉力作用的功率P1=2P2
D.若v1=2v2,拉力所做的功W1=2W2

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

12.如圖所示,MN、PQ是水平放置的一對平行金屬板,兩板接在電壓為U的電源兩極,上極板MN的中心開有一小孔,在兩板之間加一個水平方向的有界勻強磁場,邊界為半徑為R的圓形,且與MN極板相切與小孔.現(xiàn)將一帶電小球從小孔正上方某處由靜止釋放,小球穿過小孔經(jīng)磁場偏轉(zhuǎn)后沿直線從下極板右側(cè)Q處離開電場,已知極板長度和間距分別為4$\sqrt{3}$R和3R,磁感應(yīng)強度為B,重力加速度為g.
(1)求小球的比荷$\frac{q}{m}$;
(2)小球經(jīng)過兩極板后運動方向改變了多少?
(3)求小球離開Q點時的速度和從釋放到運動至Q點時的時間.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

9.一質(zhì)量為m的小球,用長為L的輕繩懸掛于O點.小球在水平力F作用下,從平衡位置P點移動到Q點,如圖所示,關(guān)于力F所做的功下列說法正確的是( 。
A.若水平力F是恒定的力,則力F所做的功為FLsinθ
B.若水平力F是恒定的力,則力F所做的功為FL(1-cosθ)
C.若是把小球緩慢移動,則力F所做的功為mgL(1-cosθ)
D.若是把小球緩慢移動,則力F所做的功為FLsinθ

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

10.如圖所示,橫放“V”字形金屬框架放在勻強磁場中,磁場與框架平面垂直,金屬棒與框架接觸良好,框架導(dǎo)體和金屬棒電阻率相同,截面積相等,現(xiàn)金屬棒從B點開始沿“V”字形角平分線方向做勻速直線運動,那么金屬棒脫離框架前,電路中的磁通量Φ、感應(yīng)電動勢E、感應(yīng)電流I以及金屬棒所受到的安培力F隨時間變化的圖象正確的是 (  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案