相關習題
 0  96578  96586  96592  96596  96602  96604  96608  96614  96616  96622  96628  96632  96634  96638  96644  96646  96652  96656  96658  96662  96664  96668  96670  96672  96673  96674  96676  96677  96678  96680  96682  96686  96688  96692  96694  96698  96704  96706  96712  96716  96718  96722  96728  96734  96736  96742  96746  96748  96754  96758  96764  96772  266669 

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:填空題

過雙曲線的右焦點,且平行于經(jīng)過一、三象限的漸近線的直線方程是   

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:填空題

以拋物線y2=4x上的點(x,4)為圓心,并過此拋物線焦點的圓的方程是   

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

已知直線x+ky-3=0所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

在平面直角坐標系xOy中,橢圓G的中心為坐標原點,左焦點為F1(-1,0),P為橢圓G的上頂點,且∠PF1O=45°.
(Ⅰ)求橢圓G的標準方程;
(Ⅱ)已知直線l1:y=kx+m1與橢圓G交于A,B兩點,直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點,且|AB|=|CD|,如圖所示.(�。┳C明:m1+m2=0;(ⅱ)求四邊形ABCD的面積S的最大值.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

已知點是離心率為的橢圓C:上的一點.斜率為的直線BD交橢圓C于B、D兩點,且A、B、D三點不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
(Ⅲ)求證:直線AB、AD的斜率之和為定值.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

設A(x1,y1),B(x2,y2)是橢圓上的兩點,已知向量=(),=(),若=0且橢圓的離心率e=,短軸長為2,O為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

已知橢圓C:的離心率為,定點M(2,0),橢圓短軸的端點是B1,B2,且MB1⊥MB2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點M且斜率不為0的直線交橢圓C于A,B兩點.試問x軸上是否存在定點P,使PM平分∠APB?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,過點F作直線l與拋物線交于A,B兩點,拋物線的準線與x軸交于點C.
(1)證明:∠ACF=∠BCF;
(2)求∠ACB的最大值,并求∠ACB取得最大值時線段AB的長.

查看答案和解析>>

科目: 來源:2013年高考數(shù)學復習卷B(五)(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+2=0相切,A.B分別是橢圓的左、右頂點,P為橢圓C上的動點.
(1)求橢圓C的標準方程;
(2)若P與A、B均不重合,設直線PA與PB的斜率分別為k1、k2,證明:k1•k2為定值;
(3)若M為過P且垂直于x軸的直線上的點,且=2,求點M的軌跡方程.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷