相關(guān)習(xí)題
 0  27617  27625  27631  27635  27641  27643  27647  27653  27655  27661  27667  27671  27673  27677  27683  27685  27691  27695  27697  27701  27703  27707  27709  27711  27712  27713  27715  27716  27717  27719  27721  27725  27727  27731  27733  27737  27743  27745  27751  27755  27757  27761  27767  27773  27775  27781  27785  27787  27793  27797  27803  27811  266669 

科目: 來源: 題型:

sin(-
19
6
π)
的值等于( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
4x+2
(x∈R)

(Ⅰ)證明f(x)+f(1-x)=
1
2
;
(Ⅱ)若數(shù)列{an}的通項(xiàng)公式為an=f(
n
m
)(m∈N*,n=1,2,…,m)
,求數(shù)列{an}的前m項(xiàng)和Sm;
(Ⅲ)設(shè)數(shù)列{bn}滿足:b1=
1
3
,bn+1=
b
2
n
+bn
,設(shè)Tn=
1
b1+1
+
1
b2+1
+…+
1
bn+1
,若(Ⅱ)中的Sm滿足對(duì)任意不小于2的正整數(shù)n,Sm<Tn恒成立,試求m的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
a
x
+lnx,x∈(0,e],g(x)=
lnx
x
,其中e是無理數(shù),a∈R.
(1)若a=1時(shí),f(x)的單調(diào)區(qū)間、極值;
(2)求證:在(1)的條件下,f(x)>g(x)+
1
2
;
(3)是否存在實(shí)數(shù)a,使f(x)的最小值是-1,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足
AP
=
PB
,
MA
AP
=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)在四棱錐P-ABCD中,AD⊥AB,CD∥AB∥MN,PD⊥底面ABCD,
AB
AD
=2
,直線PA與底面ABCD成60°角,點(diǎn)M,N分別是PA、PB的中點(diǎn).
(Ⅰ)求二面角P-MN-D的大小;
(Ⅱ)當(dāng)
CD
AB
的值為多少時(shí),∠CND為直角?

查看答案和解析>>

科目: 來源: 題型:

16、甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ,η,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知tanθ=2
(1)求tan(
π4
)的值;
(2)求cos2θ的值.

查看答案和解析>>

科目: 來源: 題型:閱讀理解

類比是一個(gè)偉大的引路人.我們知道,等差數(shù)列和等比數(shù)列有許多相似的性質(zhì),請(qǐng)閱讀下表并根據(jù)等差數(shù)列的結(jié)論,類似的得出等比數(shù)列的兩個(gè)結(jié)論:
bn=
 
,dn=
 

等差數(shù)列{an} 等比數(shù)列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn
 
若cn=
a1+a2a3+∧+an
n
,
則數(shù)列{cn}為等差數(shù)列
若dn=
 
,
則數(shù)列{dn}為等比數(shù)列

查看答案和解析>>

科目: 來源: 題型:

0

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且
cosB
cosC
=-
b
2a+c
,則角B的大小為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案