科目: 來源: 題型:
【題目】已知,給定個整點,其中.
(Ⅰ)當時,從上面的個整點中任取兩個不同的整點,求的所有可能值;
(Ⅱ)從上面個整點中任取個不同的整點,.
(i)證明:存在互不相同的四個整點,滿足,;
(ii)證明:存在互不相同的四個整點,滿足,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)對于任意,,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標之積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】目前,中國有三分之二的城市面臨“垃圾圍城”的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴重污染環(huán)境. 垃圾分類把不易降解的物質(zhì)分出來,減輕了土地的嚴重侵蝕,減少了土地流失. 2020年5月1日起,北京市將實行生活垃圾分類,分類標準為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環(huán)保,又節(jié)約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節(jié)省造紙能源消耗40%~50%.
現(xiàn)調(diào)查了北京市5個小區(qū)12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:
小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | |
廢紙投放量(噸) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(噸) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)從這5個小區(qū)中任取1個小區(qū),求該小區(qū)12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;
(Ⅱ)從這5個小區(qū)中任取2個小區(qū),記為12月份投放的廢紙可再造好紙超過4噸的小區(qū)個數(shù),求的分布列及期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,的中點為.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在邊長為的等邊三角形中,點分別是邊上的點,滿足且,將沿直線折到的位置. 在翻折過程中,下列結論成立的是( )
A.在邊上存在點,使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個位置,滿足平面平面
C.若,當二面角為直二面角時,
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
科目: 來源: 題型:
【題目】對于在某個區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個弱漸近函數(shù).
(1)若函數(shù)是函數(shù)在區(qū)間上的一個弱漸近函數(shù),求實數(shù)的取值范圍;
(2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);
(3)試問:函數(shù)與函數(shù)(其中為自然對數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請求出對應的弱漸近函數(shù)應滿足的條件;如不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設數(shù)列滿足,,.
(1)求證:數(shù)列為等比數(shù)列;
(2)對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當排序后能構成等差數(shù)列,求符合條件的數(shù)組;
(3)若數(shù)列滿足,是否存在實數(shù),使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某景區(qū)欲建造同一水平面上的兩條圓形景觀步道、(寬度忽略不計),已知,(單位:米),要求圓與、分別相切于點、,與、分別相切于點、,且.
(1)若,求圓、圓的半徑(結果精確到米);
(2)若景觀步道、的造價分別為每米千元、千元,如何設計圓、圓的大小,使總造價最低?最低總造價為多少(結果精確到千元)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com