科目: 來源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左焦點(diǎn),直線與y軸交于點(diǎn)P.且與橢圓交于A,B兩點(diǎn).A為橢圓的右頂點(diǎn),B在x軸上的射影恰為。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點(diǎn),直線MP與橢圓交于另一點(diǎn)N,若,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB=4,E為BC的中點(diǎn),現(xiàn)將△BAE與△DCE折起,使得平面BAE及平面DEC都與平面ADE垂直.
(1)求證:BC∥平面ADE;
(2)求二面角A﹣BE﹣C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,
,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),,(),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),,(),
,
,
當(dāng) 時(shí), ,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù), , 滿足,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為實(shí)數(shù)常數(shù))
(1)當(dāng)時(shí),求函數(shù)在上的單調(diào)區(qū)間;
(2)當(dāng)時(shí),成立,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),且與直線相切, 圓心C在直線上.
(1)求圓C的方程;
(2)過原點(diǎn)的直線截圓C所得的弦長為2,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com