相關(guān)習題
 0  265145  265153  265159  265163  265169  265171  265175  265181  265183  265189  265195  265199  265201  265205  265211  265213  265219  265223  265225  265229  265231  265235  265237  265239  265240  265241  265243  265244  265245  265247  265249  265253  265255  265259  265261  265265  265271  265273  265279  265283  265285  265289  265295  265301  265303  265309  265313  265315  265321  265325  265331  265339  266669 

科目: 來源: 題型:

【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.

1)求證:四點共面,并證明∥平面.

2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】平面直角坐標系中,已知點,直線,動點到點的距離比它到直線的距離小2.

1)求點的軌跡的方程;

2)設斜率為2的直線與曲線交于、兩點(點在第一象限),過點軸的平行線,問在坐標平面中是否存在定點,使直線交直線于點,且恒成立?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,是以為直徑的圓上一點,,等腰梯形所在的平面垂直于⊙所在的平面,且.

1)求所成的角;

2)若異面直線所成的角為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】今年,新型冠狀病毒來勢兇猛,老百姓一時間談毒色變,近來,有關(guān)喝白酒可以預防病毒的說法一直在民間流傳,更有人拿出醫(yī)字的繁體字醫(yī)進行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預防病毒,我們調(diào)查了1000人的喝酒生活習慣與最終是否得病進行了統(tǒng)計,表格如下:

每周喝酒量(兩)

人數(shù)

100

300

450

100

規(guī)定:①每周喝酒量達到4兩的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量達到8兩的叫有酒癮的人.

1)求值,從每周喝酒量達到6兩的人中按照分層抽樣選出6人,再從這6人中選出2人,求這2人中無有酒癮的人的概率;

2)請通過上述表格中的統(tǒng)計數(shù)據(jù),填寫完下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.1的前提下認為是否得病與是否常喝酒有關(guān)?并對民間流傳的說法做出你的判斷.

常喝酒

不常喝酒

合計

得病

不得病

250

650

合計

參考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】定義行列式的運算如下:,已函數(shù)以下命題正確的是(

①對,都有;②若,對,總存在非零常數(shù)了,使得;③若存在直線的圖象無公共點,且使的圖案位于直線兩側(cè),此直線即稱為函數(shù)的分界線.的分界線的斜率的取值范圍是;④函數(shù)的零點有無數(shù)個.

A.①③④B.①②④

C.②③D.①④

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在極坐標系中,,弧,所在圓的圓心分別為,,曲線是弧,曲線是弧,曲線是弧

1)寫出曲線,的極坐標方程;

2)曲線,構(gòu)成,若曲線的極坐標方程為,,),寫出曲線與曲線的所有公共點(除極點外)的極坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).為自然對數(shù)的底數(shù))

1)當時,設,求函數(shù)上的最值;

2)當時,證明:,其中表示中較小的數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓,經(jīng)過點且斜率為的直線相交于兩點,與軸相交于點.

1)若,且恰為線段的中點,求證:線段的垂直平分線經(jīng)過定點;

2)若,設分別為 的左、右頂點,直線、相交于點.當點異于時,是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,平面,,,.是棱上的一點,.

1)求證:平面平面;

2)若二面角的余弦值為.多面體的體積為,求.

查看答案和解析>>

同步練習冊答案