科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的方程為,過點(diǎn)的一條直線與拋物線交于兩點(diǎn),若拋物線在兩點(diǎn)的切線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)直線與直線的夾角為,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是邊長(zhǎng)為2的正方形,且OA=2,M,N分別為OA,BC的中點(diǎn).
(1)求證:直線MN平面OCD;
(2)求點(diǎn)B到平面DMN的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場(chǎng)比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對(duì)一的點(diǎn)球決勝,即雙方各派處一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場(chǎng)的隊(duì)員無需出場(chǎng)罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場(chǎng)).由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中串只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.
(1)定義事件為“一班第三位同學(xué)沒能出場(chǎng)罰球”,求事件發(fā)生的概率;
(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對(duì)一點(diǎn)球決勝,一對(duì)一球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場(chǎng)過的隊(duì)員主罰點(diǎn)球,若在一對(duì)一點(diǎn)球決勝的某一輪中,某對(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽. 若直至雙方場(chǎng)上每名隊(duì)員都已經(jīng)出場(chǎng)罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負(fù),本場(chǎng)比賽中若已知雙方在點(diǎn)球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對(duì)一點(diǎn)球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,P為AB上一動(dòng)點(diǎn),交于AC于點(diǎn)D,現(xiàn)將沿PD翻折至,使平面平面PBCD.
(1)若,求棱錐的體積;
(2)若點(diǎn)P為AB的中點(diǎn),求證:平面平面.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com