【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
【答案】(1) ;(2)證明見(jiàn)解析.
【解析】解:(1)方程7x-4y-12=0可化為y=x-3,
當(dāng)x=2時(shí),y=.
又f′(x)=a+,
于是,解得
故f(x)=x-.
(2)證明:設(shè)P(x0,y0)為曲線上任一點(diǎn),由f′(x)=1+知,曲線在點(diǎn)P(x0,y0)處的切線方程為y-y0=(1+)·(x-x0),即y-(x0-)=(1+)(x-x0).
令x=0得,y=-,從而得切線與直線x=0,交點(diǎn)坐標(biāo)為(0,- ).
令y=x,得y=x=2x0,從而得切線與直線y=x的交點(diǎn)坐標(biāo)為(2x0,2x0).
所以點(diǎn)P(x0,y0)處的切線與直線x=0,y=x所圍成的三角形面積為|-||2x0|=6.
曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,此定值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xOy平面內(nèi),已知?jiǎng)狱c(diǎn)M到點(diǎn)D(﹣4,0)與E(﹣1,0)的距離之比為2.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)是否存在經(jīng)過(guò)點(diǎn)(﹣1,1)的直線l,它與曲線C相交于A,B兩個(gè)不同點(diǎn),且滿(mǎn)足 (O為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)M也在曲線C上,如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣5:不等式選講
已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個(gè)不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是上的有界函數(shù),其中稱(chēng)為函數(shù)的一個(gè)上界.已知函數(shù), .
(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在一個(gè)坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測(cè)量該山坡相對(duì)于水平地面的坡角θ,在山坡的A處測(cè)得∠DAC=15°,沿山坡前進(jìn)50m到達(dá)B處,又測(cè)得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標(biāo)系與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸中,曲線C的方程為.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(1,1),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)在某段路程中的行駛速度與時(shí)間的關(guān)系如下圖:
(Ⅰ)求圖中陰影部分的面積,并說(shuō)明所求面積的實(shí)際意義;
(Ⅱ)假設(shè)這輛汽車(chē)的里程表在汽車(chē)行駛這段路程前的讀數(shù)為,試將汽車(chē)行駛這段路程時(shí)汽車(chē)?yán)锍瘫碜x數(shù)表示為時(shí)間的函數(shù),并求出當(dāng)汽車(chē)?yán)锍瘫碜x數(shù)為時(shí),汽車(chē)行駛了多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com