科目: 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),曲線C2的方程為(x-1)2+(y-1)2=2.
(1)在以O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的極坐標(biāo)方程;
(2)直線θ=β(0<β<π)與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函數(shù)在點(1,f(1))處的切線平行于直線y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,討論c(x)的單調(diào)性;
(3)a=1時,函數(shù)y=f(x)圖象上的所有點都落在區(qū)域內(nèi),求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】國內(nèi)某知名企業(yè)為適應(yīng)發(fā)展的需要,計劃加大對研發(fā)的投入,據(jù)了解,該企業(yè)原有100名技術(shù)人員,年人均投入萬元,現(xiàn)把原有技術(shù)人員分成兩部分:技術(shù)人員和研發(fā)人員,其中技術(shù)人員名(且),調(diào)整后研發(fā)人員的年人均投入增加%,技術(shù)人員的年人均投入調(diào)整為萬元.
(1)要使這名研發(fā)人員的年總投入恰好與調(diào)整前100名技術(shù)人員的年總投入相同,求調(diào)整后的技術(shù)人員的人數(shù);
(2)是否存在這樣的實數(shù),使得調(diào)整后,在技術(shù)人員的年人均投入不減少的情況下,研發(fā)人員的年總投入始終不低于技術(shù)人員的年總投入?若存在,求出的范圍,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2BC=2,點M為DC的中點,將△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)求點C到平面BDM的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材曾有介紹:圓上的點處的切線方程為我們將其結(jié)論推廣:橢圓的點處的切線方程為在解本題時可以直接應(yīng)用,已知直線與橢圓E:有且只有一個公共點.
(1)求的值;
(2)設(shè)O為坐標(biāo)原點,過橢圓E上的兩點A、B分別作該橢圓的兩條切線,且與交于點M
①設(shè),直線AB、OM的斜率分別為,求證:為定值;
②設(shè),求△OAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的兩個焦點為點在雙曲線C上.
(1)求雙曲線C的方程;
(2)已知Q(0,2),P為雙曲線C上的動點,點M滿足求動點M的軌跡方程;
(3)過點Q(0,2)的直線與雙曲線C相交于不同的兩點E、F,若求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】運動健康已成為大家越來越關(guān)心的話題,某公司開發(fā)的一個類似計步數(shù)據(jù)庫的公眾號.手機用戶可以通過關(guān)注該公眾號查看自己每天行走的步數(shù),同時也可以和好友進(jìn)行運動量的PK和點贊.現(xiàn)從張華的好友中隨機選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:
步數(shù) 性別 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
(1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為男、女的“評定類型”有差異?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
(2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機抽取2人,設(shè)抽取的女性有X人,求X=1時的概率.
參考公式與數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com