相關(guān)習(xí)題
 0  262470  262478  262484  262488  262494  262496  262500  262506  262508  262514  262520  262524  262526  262530  262536  262538  262544  262548  262550  262554  262556  262560  262562  262564  262565  262566  262568  262569  262570  262572  262574  262578  262580  262584  262586  262590  262596  262598  262604  262608  262610  262614  262620  262626  262628  262634  262638  262640  262646  262650  262656  262664  266669 

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系.

(I)求圓的普通方程及其極坐標(biāo)方程;

(II)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,平面平面,,,.

(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線 垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).

(I)求橢圓C的方程;

(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線 交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)EF在圓O,ABEF,矩形ABCD所在平面和圓O所在平面垂直已知AB=2,EF=1.

(I)求證平面DAF⊥平面CBF;

(II)若BC=1,求四棱錐FABCD的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若是橢圓上不重合的四點(diǎn),相交于點(diǎn),且,求此時(shí)直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年7月24日,長春長生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,后又被測(cè)出百白破疫苗“效價(jià)測(cè)定”項(xiàng)不符合規(guī)定, 由此引發(fā)的疫苗事件牽動(dòng)了無數(shù)中國人的心.疫苗直接用于健康人群,尤其是新生兒和青少年,與人民的健康聯(lián)系緊密.因此,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測(cè),并通過臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:

未感染病毒

感染病毒

總計(jì)

未注射疫苗

20

x

A

注射疫苗

30

y

B

總計(jì)

50

50

100

現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為

(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;

(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?

(3)現(xiàn)從感染病毒的小白鼠中任意抽取三只進(jìn)行病理分析,記已注射疫苗的小白鼠只數(shù)為,求的分布列和數(shù)學(xué)期望.

附:,n=a+b+c+d.

P(K2≥k0)

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在空間四面體中, ⊥平面,,且

(1)證明:平面⊥平面;

(2)求四面體體積的最大值,并求此時(shí)二面角的余弦值

查看答案和解析>>

科目: 來源: 題型:

【題目】為保障城市蔬菜供應(yīng),某蔬菜種植基地每年投入20萬元搭建甲、乙兩個(gè)無公害蔬菜大棚,每個(gè)大棚至少要投入2萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與大棚投入分別滿足,.設(shè)甲大棚的投入為,每年兩個(gè)大棚的總收入為.(投入與收入的單位均為萬元)

(Ⅰ)求的值.

(Ⅱ)試問:如何安排甲、乙兩個(gè)大棚的投入,才能使年總收人最大?并求最大年總收入.

查看答案和解析>>

科目: 來源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;

(3)若從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目: 來源: 題型:

【題目】一個(gè)盒子中裝有6張卡片,上面分別寫著如下六個(gè)定義域?yàn)?/span>的函數(shù):, ,, ,,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________

查看答案和解析>>

同步練習(xí)冊(cè)答案