【題目】為保障城市蔬菜供應(yīng),某蔬菜種植基地每年投入20萬(wàn)元搭建甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入2萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與大棚投入分別滿(mǎn)足,.設(shè)甲大棚的投入為,每年兩個(gè)大棚的總收入為.(投入與收入的單位均為萬(wàn)元)
(Ⅰ)求的值.
(Ⅱ)試問(wèn):如何安排甲、乙兩個(gè)大棚的投入,才能使年總收人最大?并求最大年總收入.
【答案】(Ⅰ)39萬(wàn)元(Ⅱ)甲大棚投入18萬(wàn)元,乙大棚投入2萬(wàn)元時(shí),最大年總收入為44.5萬(wàn)元.
【解析】
(I)根據(jù)題意求得的表達(dá)式,由此求得的值.
(II)求得的定義域,利用換元法,結(jié)合二次函數(shù)的性質(zhì),求得的最大值,以及甲、乙兩個(gè)大棚的投入.
(Ⅰ)由題意知,
所以(萬(wàn)元).
(Ⅱ)依題意得.
故.
令,則,,
顯然在上單調(diào)遞增,
所以當(dāng),即時(shí),取得最大值,.
所以當(dāng)甲大棚投入18萬(wàn)元,乙大棚投入2萬(wàn)元時(shí),年總收入最大,且最大年總收入為44.5萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)若函數(shù)在處的切線(xiàn)與直線(xiàn)垂直,求的值;
(2)討論在R上的單調(diào)性;
(3)對(duì)任意,總有成立,求正整數(shù)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,是等腰梯形,,,,.給出下列三個(gè)命題:
平面平面;
異面直線(xiàn)與所成角的余弦值為;
直線(xiàn)與平面所成角的正弦值為.
那么,下列命題為真命題的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,,且.
(1)求證:數(shù)列不是等差數(shù)列;
(2)是否存在整數(shù),使得對(duì)任意的都成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),函數(shù)的圖象與x軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),其中,.
(1)求證:函數(shù)與的圖象交點(diǎn)落在一條定直線(xiàn)上;
(2)若,求a,b和k應(yīng)滿(mǎn)足的關(guān)系式:
(3)是否存在函數(shù)和,使得B,C為線(xiàn)段AD的三等分點(diǎn)?若存在,求的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左焦點(diǎn)為F,上頂點(diǎn)為A,直線(xiàn)AF與直線(xiàn) 垂直,垂足為B,且點(diǎn)A是線(xiàn)段BF的中點(diǎn).
(I)求橢圓C的方程;
(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線(xiàn)MP與直線(xiàn) 交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)與橢圓交于,兩點(diǎn),已知 , ,若橢圓的離心率,又經(jīng)過(guò)點(diǎn),為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)時(shí),試問(wèn):的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com