科目: 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式
對一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若函數(shù),最小值為,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),不等式的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對任意的恒成立;④存在三個(gè)點(diǎn),,,使得為等邊三角形.其中真命題的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于f(x)=4sin (x∈R),有下列命題
①由f(x1)=f(x2)=0可得x1-x2是π的整數(shù)倍;
②y=f(x)的表達(dá)式可改寫成y=4cos;
③y=f(x)圖象關(guān)于對稱;
④y=f(x)圖象關(guān)于x=-對稱.
其中正確命題的序號(hào)為________(將你認(rèn)為正確的都填上)。
查看答案和解析>>
科目: 來源: 題型:
【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費(fèi)者喜愛.其中,種類型的快餐每份進(jìn)價(jià)為元,并以每份元的價(jià)格銷售.如果當(dāng)天20:00之前賣不完,剩余的該種快餐每份以元的價(jià)格作特價(jià)處理,且全部售完.
(1)若該代賣店每天定制份種類型快餐,求種類型快餐當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(2)該代賣店記錄了一個(gè)月天的種類型快餐日需求量(每天20:00之前銷售數(shù)量)
日需求量 | ||||||
天數(shù) |
(i)假設(shè)代賣店在這一個(gè)月內(nèi)每天定制份種類型快餐,求這一個(gè)月種類型快餐的日利潤(單位:元)的平均數(shù)(精確到);
(ii)若代賣店每天定制份種類型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類型快餐當(dāng)天的利潤不少于元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com