相關(guān)習題
 0  261979  261987  261993  261997  262003  262005  262009  262015  262017  262023  262029  262033  262035  262039  262045  262047  262053  262057  262059  262063  262065  262069  262071  262073  262074  262075  262077  262078  262079  262081  262083  262087  262089  262093  262095  262099  262105  262107  262113  262117  262119  262123  262129  262135  262137  262143  262147  262149  262155  262159  262165  262173  266669 

科目: 來源: 題型:

【題目】“水是生命之源”,但是據(jù)科學界統(tǒng)計可用淡水資源僅占地球儲水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸):一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;

(3)若該市政府希望使的居民每月的用水不按議價收費,估計的值,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點是曲線上一點,,求點到直線的最小距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】國家規(guī)定,疫苗在上市前必須經(jīng)過嚴格的檢測,并通過臨床實驗獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:

未感染病毒

感染病毒

總計

未注射疫苗

40

p

x

注射疫苗

60

q

y

總計

100

100

200

現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.

(1)求列聯(lián)表中的數(shù)據(jù)p,q,,的值;

(2)能否有把握認為注射此種疫苗有效?

(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進行病例分析,然后從這五只小白鼠中隨機抽取3只對注射疫苗情況進行核實,求至少抽到2只為未注射疫苗的小白鼠的概率. 附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】正方體的棱長為2,分別為的中點,則(

A.直線與直線垂直B.直線與平面平行

C.平面截正方體所得的截面面積為D.與點到平面的距離相等

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)(其中,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為

1)求的解析式;

2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.

3)在(2)的條件下,若存在,使得不等式成立,求實數(shù)的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對應的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點;

④若變量之間的相關(guān)系數(shù)為,則變量之間的負相關(guān)很強.

以上正確說法的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);

(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對于函數(shù)的圖象上兩點, ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到了如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

15

有私家車

45

合計

100

已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.

(1)請將上面的列聯(lián)表補充完整;

(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認為“對限行的態(tài)度與是否擁有私家車有關(guān)”;

(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

附:參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.10

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案