相關習題
 0  260816  260824  260830  260834  260840  260842  260846  260852  260854  260860  260866  260870  260872  260876  260882  260884  260890  260894  260896  260900  260902  260906  260908  260910  260911  260912  260914  260915  260916  260918  260920  260924  260926  260930  260932  260936  260942  260944  260950  260954  260956  260960  260966  260972  260974  260980  260984  260986  260992  260996  261002  261010  266669 

科目: 來源: 題型:

【題目】已知坐標平面上動點 與兩個定點 , ,且 .
(1)求點 的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中軌跡為 ,過點 的直線 所截得的線段長度為8,求直線 的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴重,現(xiàn)隨機抽取一年(365天)內100天的空氣中 指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結果如下:

空氣質量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經濟損失為 (單位:元), 指數(shù)為 .當 在區(qū)間 內時對企業(yè)沒有造成經濟損失;當 在區(qū)間 內時對企業(yè)造成經濟損失成直線模型(當 指數(shù)為150時造成的經濟損失為500元,當 指數(shù)為200 時,造成的經濟損失為700元);當 指數(shù)大于300時造成的經濟損失為2000元.

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100


(1)試寫出 的表達式;
(2)試估計在本年內隨機抽取一天,該天經濟損失 大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有 的把握認為鄭州市本年度空氣重度污染與供暖有關?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐 中,底面梯形 , ,平面 平面 , 是等邊三角形,已知 , , 上任意一點, ,且 .

(1)求證:平面 平面 ;
(2)試確定 的值,使三棱錐 體積為三棱錐 體積的3倍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線的焦點到漸進線的距離等于實半軸長,則該雙曲線的離心率為( )
A.
B.2
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖直三棱柱 中, 為邊長為2的等邊三角形, ,點 、 、 、 、 分別是邊 、 、 、 的中點,動點 在四邊形 內部運動,并且始終有 平面 ,則動點 的軌跡長度為( )

A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】我們可以用隨機模擬的方法估計 的值,如圖程序框圖表示其基本步驟(函數(shù) 是產生隨機數(shù)的函數(shù),它能隨機產生 內的任何一個實數(shù)).若輸出的結果為 ,則由此可估計 的近似值為( )

A.3.119
B.3.124
C.3.132
D.3.151

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=a·2x+b·3x , 其中常數(shù)a,b滿足ab≠0.
(1)若ab>0,判斷函數(shù)f(x)的單調性;
(2)若ab<0,求f(x+1)>f(x)時x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調性與奇偶性;
(2)是否存在實數(shù)t , 使不等式f(xt)+f(x2t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式 -m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當x∈[-1,2]時,g(x)=f(x)-kx是單調函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案