相關(guān)習(xí)題
 0  260579  260587  260593  260597  260603  260605  260609  260615  260617  260623  260629  260633  260635  260639  260645  260647  260653  260657  260659  260663  260665  260669  260671  260673  260674  260675  260677  260678  260679  260681  260683  260687  260689  260693  260695  260699  260705  260707  260713  260717  260719  260723  260729  260735  260737  260743  260747  260749  260755  260759  260765  260773  266669 

科目: 來源: 題型:

【題目】設(shè)拋物線C1:y2=8x的準(zhǔn)線與x軸交于點(diǎn)F1 , 焦點(diǎn)為F2 . 以F1 , F2為焦點(diǎn),離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設(shè)N(0,﹣2),過點(diǎn)P(1,2)作直線l,交橢圓C2于異于N的A、B兩點(diǎn).
(。┤糁本NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣x﹣ax2 , a∈R. (Ⅰ)若函數(shù)f(x)在區(qū)間 上有單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)證明不等式:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=2x+1,數(shù)列{an}滿足an=f(n)(n∈N*),數(shù)列{bn}的前n項和為Tn , 且b1=2,Tn=bn+1﹣2(n∈N).
(1)分別求{an},{bn}的通項公式;
(2)定義x=[x]+(x),[x]為實數(shù)x的整數(shù)部分,(x)為小數(shù)部分,且0≤(x)<1.記cn= ,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

【題目】大學(xué)開設(shè)甲、乙、丙三門選修課供學(xué)生任意選修(也可不選),假設(shè)學(xué)生是否選修哪門課彼此互不影響.已知某學(xué)生只選修甲一門課的概率為0.08,選修甲和乙兩門課的概率為0.12,至少選修一門的概率是0.88.
(1)求該學(xué)生選修甲、乙、丙的概率分別是多少?
(2)用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,求直線AM與平面BDM所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 ,函數(shù) . (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若 ,a=2,求b+c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,為了得到g(x)=cos2x的圖象,則只需將f(x)的圖象(
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度

查看答案和解析>>

科目: 來源: 題型:

【題目】若集合A={x|2 >1},集合B={x|y=lg },則A∩B=(
A.{x|﹣5<x<1}
B.{x|﹣2<x<1}
C.{x|﹣2<x<﹣1}
D.{x|﹣5<x<﹣1}

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=af(x)﹣|x﹣1|.
(Ⅰ)當(dāng)a=0時,若g(x)≤|x﹣2|+b對任意x∈(0,+∞)恒成立,求實數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時,求g(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案