相關(guān)習題
 0  260480  260488  260494  260498  260504  260506  260510  260516  260518  260524  260530  260534  260536  260540  260546  260548  260554  260558  260560  260564  260566  260570  260572  260574  260575  260576  260578  260579  260580  260582  260584  260588  260590  260594  260596  260600  260606  260608  260614  260618  260620  260624  260630  260636  260638  260644  260648  260650  260656  260660  260666  260674  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關(guān)于直線x=π對稱.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=cosxsin2x,下列說法中正確的是
①y=f(x)的圖象關(guān)于(π,0)中心對稱;②y=f(x)的圖象關(guān)于直線x= 對稱
③y=f(x)的最大值是 ; ④f(x)即是奇函數(shù),又是周期函數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列{an}的首項為a1 , 公差為d,其前n項和為Sn , 若直線y=a1x+m與圓x2+(y﹣1)2=1的兩個交點關(guān)于直線x+y﹣d=0對稱,則數(shù)列( )的前100項的和為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實數(shù)根之和為(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點,P是雙曲線右支上一點,滿足( + =0(O為坐標原點),且3| |=4| |,則雙曲線的離心率為(
A.2
B.
C.
D.5

查看答案和解析>>

科目: 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則下列結(jié)論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.線性回歸直線一定過點(4.5,3.5)
B.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
C.t的取值必定是3.15
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目: 來源: 題型:

【題目】執(zhí)行如圖的算法程序框圖,輸出的結(jié)果是(
A.211﹣2
B.211﹣1
C.210﹣2
D.210﹣1

查看答案和解析>>

科目: 來源: 題型:

【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法中正確的是(
A.命題“p∧q”為假命題,則p,q均為假命題
B.命題“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2≤1”
C.命題“若a>b,則a2>b2”的逆否命題是“若a2<b2 , 則a<b”
D.設(shè)x∈R,則“x> ”是“2x2+x﹣1>0”的必要而不充分條件

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項公式an=sin tannθ,其前n項和為Sn
(1)求證:當n為偶函數(shù)時,an=0;當n為奇函數(shù)時,an=(﹣1) tannθ;
(2)求證:對任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

同步練習冊答案