【題目】已知定義在R上的函數(shù)滿(mǎn)足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實(shí)數(shù)根之和為(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

【答案】C
【解析】解:∵f(x)= ,且f(x+2)=f(x), ∴f(x﹣2)﹣2=
又g(x)= ,則g(x)=2 ,

當(dāng)x≠2k﹣1,k∈Z時(shí),
上述兩個(gè)函數(shù)都是關(guān)于(﹣2,2)對(duì)稱(chēng),

由圖象可得:方程f(x)=g(x)在區(qū)間[﹣7,3]上的實(shí)根有5個(gè),
x1滿(mǎn)足﹣7<x4<﹣6,x2滿(mǎn)足﹣5<x2<﹣4,x3=﹣3,x4滿(mǎn)足0<x4<1,x2+x4=﹣4
, x5滿(mǎn)足2<x5<3,x1+x5=﹣4
∴方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實(shí)根之和為﹣11.
所以答案是;C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDPE中,四邊形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F(xiàn)是CE的中點(diǎn).
(1)求證:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線(xiàn)G:y2=2px(p>0)焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)G交于M、N兩點(diǎn)(M在x軸上方),滿(mǎn)足 , ,則以M為圓心且與拋物線(xiàn)準(zhǔn)線(xiàn)相切的圓的標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點(diǎn)為A.

(1)求該橢圓的方程:
(2)過(guò)點(diǎn)D( ,﹣ )作直線(xiàn)PQ交橢圓于兩個(gè)不同點(diǎn)P,Q,求證:直線(xiàn)AP,AQ的
斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(
A.命題“p∧q”為假命題,則p,q均為假命題
B.命題“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2≤1”
C.命題“若a>b,則a2>b2”的逆否命題是“若a2<b2 , 則a<b”
D.設(shè)x∈R,則“x> ”是“2x2+x﹣1>0”的必要而不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點(diǎn),E為BC的中點(diǎn).
(1)求證:直線(xiàn)AE∥平面BDC1;
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aex﹣2x﹣2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是(
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn) 的焦點(diǎn)F1與橢圓 的一個(gè)焦點(diǎn)重合,Γ的準(zhǔn)線(xiàn)與x軸的交點(diǎn)為F1 , 若Γ與C的交點(diǎn)為A,B,且點(diǎn)A到點(diǎn)F1 , F2的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過(guò)原點(diǎn)且斜率存在的直線(xiàn)l交橢圓C于點(diǎn)G,H,且△OGH的面積為1,線(xiàn)段GH的中點(diǎn)為P.在x軸上是否存在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)定點(diǎn)M,N,使得直線(xiàn)PM,PN的斜率之積為定值?若存在,求出兩定點(diǎn)M,N的坐標(biāo)和定值的大小;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三個(gè)根,分別為x1 , x2 , x3(x1<x2<x3),則x1+x2+x3的取值范圍是(
A.[ ,
B.[
C.[ ,
D.[

查看答案和解析>>

同步練習(xí)冊(cè)答案