科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ= (p>0).
(Ⅰ)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),求 + 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點(diǎn),以AB為直徑作⊙O,并分別交AC,AD于點(diǎn)E,F(xiàn).
(Ⅰ)證明:C,E,F(xiàn),D四點(diǎn)共圓;
(Ⅱ)若D為BC的中點(diǎn),且AF=3,F(xiàn)D=1,求AE的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)ex和函數(shù)g(x)=(ex﹣a)(x﹣1)2(a>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)判斷函數(shù)g(x)的極值點(diǎn)的個(gè)數(shù),并說明理由;
(3)若函數(shù)g(x)存在極值為2a2 , 求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三角形的三邊長(zhǎng)是公差為2的等差數(shù)列,且最大角的正弦值為,則這個(gè)三角形的周長(zhǎng)是( )
A. 18 B. 15 C. 21 D. 24
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率為 ,直線x+y+ =0與橢圓E僅有一個(gè)公共點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3所截得的弦長(zhǎng)為3,且與橢圓E交于A、B兩點(diǎn),求△ABO面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)某水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù),得到某河流水位X(單位:米)的頻率分布直方圖如圖:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.
(1)求未來三年,至多有1年河流水位X∈[27,31)的概率(結(jié)果用分?jǐn)?shù)表示);
(2)該河流對(duì)沿河A企業(yè)影響如下:當(dāng)X∈[23,27)時(shí),不會(huì)造成影響;當(dāng)X∈[27,31)時(shí),損失10000元;當(dāng)X∈[31,35)時(shí),損失60000元,為減少損失,現(xiàn)有種應(yīng)對(duì)方案: 方案一:防御35米的最高水位,需要工程費(fèi)用3800元;
方案二:防御不超過31米的水位,需要工程費(fèi)用2000元;
方案三:不采取措施;
試比較哪種方案較好,并請(qǐng)說理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com