科目: 來源: 題型:
【題目】已知f(x)=logax(a>0且a≠1)的圖象過點(4,2),
(1)求a的值.
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定義域.
(3)在(2)的條件下,求g(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標方程;
(Ⅱ)設點P(4,3),直線l與圓C相交于A,B兩點,求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題p:方程x2-2mx+m=0沒有實數(shù)根;命題q:x∈R,x2+mx+1≥0.
(1)寫出命題q的否定“q”.
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實數(shù)a的取值范圍;
(Ⅱ)設g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證: >a.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點,點P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D,E分別是B1C1、BC的中點,∠BAC=90°,AB=AC=2,A1A=4,A1E= .
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表: 甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某教師調(diào)查了名高三學生購買的數(shù)學課外輔導書的數(shù)量,將統(tǒng)計數(shù)據(jù)制成如下表格:
男生 | 女生 | 總計 | |
購買數(shù)學課外輔導書超過本 | |||
購買數(shù)學課外輔導書不超過本 | |||
總計 |
(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認為購買數(shù)學課外輔導書的數(shù)量與性別相關;
(Ⅱ)從購買數(shù)學課外輔導書不超過本的學生中,按照性別分層抽樣抽取人,再從這人中隨機抽取人詢問購買原因,求恰有名男生被抽到的概率.
附: , .
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓: 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長軸長為4.
(1)求橢圓的標準方程;
(2)若直線交橢圓于, 兩點, ()為橢圓上一點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com