【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表: 甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

【答案】解:(Ⅰ) 記“抽取的兩天送餐單數(shù)都大于40”為事件M, 則P(M)=
(Ⅱ)(。┰O(shè)乙公司送餐員送餐單數(shù)為a,
則當(dāng)a=38時,X=38×5=190,
當(dāng)a=39時,X=39×5=195,
當(dāng)a=40時,X=40×5=200,
當(dāng)a=41時,X=40×5+1×7=207,
當(dāng)a=42時,X=40×5+2×7=214.
所以X的所有可能取值為190,195,200,207,214.故X的分布列為:

X

190

195

200

207

214

P

∴E(X)=190× +195× +200× +207× +214× =
(ⅱ)依題意,甲公司送餐員日平均送餐單數(shù)為
38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.
所以甲公司送餐員日平均工資為70+4×39.5=228元.
由(。┑靡夜舅筒蛦T日平均工資為192.2元.
因為192.2<228,故推薦小明去甲公司應(yīng)聘
【解析】(Ⅰ) 記“抽取的兩天送餐單數(shù)都大于40”為事件M,可得P(M)= .(Ⅱ)(。┰O(shè)乙公司送餐員送餐單數(shù)為a,可得當(dāng)a=38時,X=38×5=190,以此類推可得:當(dāng)a=39時,當(dāng)a=40時,X的值.當(dāng)a=41時,X=40×5+1×7,同理可得:當(dāng)a=42時,X=214.所以X的所有可能取值為190,1195,200,207,214.可得X的分布列及其數(shù)學(xué)期望.(ⅱ)依題意,甲公司送餐員日平均送餐單數(shù)為38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.可得甲公司送餐員日平均工資,與乙數(shù)學(xué)期望比較即可得出.
【考點精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中,a,b為常數(shù),n∈Nf(0)A.已知栽種3年后該樹木的高度為栽種時高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時高度的8倍;

2)該樹木在栽種后哪一年的增長高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a≥2,不等式logax+loga[(a+1)ak-1-x]≥2k-1的解集為A,其中a∈N*,k∈N.

(1)A.

(2)設(shè)f(k)表示A中自然數(shù)個數(shù),求和Sn=f(1)+f(2)+…+f(n).

(3)當(dāng)a=2,比較Snn2+n的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x與點M(0,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若 =0,則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證: >a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2,

E、F分別為、上的點,且.

(1)求證:BE⊥平面ACF;

(2)求點E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2).

(1)求拋物線C的方程及準(zhǔn)線l的方程;
(2)過焦點F的直線(不經(jīng)過Q點)與拋物線交于A,B兩點,與準(zhǔn)線l交于點M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案