相關(guān)習(xí)題
 0  236049  236057  236063  236067  236073  236075  236079  236085  236087  236093  236099  236103  236105  236109  236115  236117  236123  236127  236129  236133  236135  236139  236141  236143  236144  236145  236147  236148  236149  236151  236153  236157  236159  236163  236165  236169  236175  236177  236183  236187  236189  236193  236199  236205  236207  236213  236217  236219  236225  236229  236235  236243  266669 

科目: 來源: 題型:選擇題

15.橢圓$\frac{x^2}{2}+\frac{y^2}{4}=2$的焦距為(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖所示,已知AB是⊙O的直徑,C為圓上任意一點(diǎn),過C的切線分別與過A,B兩點(diǎn)的切線交于P,Q.求證:AB2=4AP•BQ.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.如圖所示,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)P,CD=10cm,AP:PB=1:5,那么⊙O的半徑是( 。
A.5$\sqrt{2}$cmB.4$\sqrt{3}$cmC.3$\sqrt{5}$cmD.2$\sqrt{6}$cm

查看答案和解析>>

科目: 來源: 題型:選擇題

12.某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個(gè)小組的頻率之比為1:2:3,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數(shù)為10,則第4小組顧客的人數(shù)是( 。
A.15B.20C.25D.30

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知定義在R上的函數(shù)f(x)滿足f(1-x)+f(1+x)=2,且當(dāng)x>1時(shí),f(x)=$\frac{x}{{e}^{x-2}}$,則曲線y=f(x)在x=0處的切線方程是x+y=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數(shù)y=kx+1(k>0)與y=$\frac{x+1}{x}$與圖象的交點(diǎn)為A、B.則|$\overrightarrow{OA}+\overrightarrow{OB}$|的值(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

9.點(diǎn)A(0,2)是圓x2+y2=16內(nèi)的定點(diǎn),B,C是這個(gè)圓上的兩個(gè)動(dòng)點(diǎn),若BA⊥CA,求BC中點(diǎn)M的軌跡方程,并說明它的軌跡是什么曲線.

查看答案和解析>>

科目: 來源: 題型:填空題

8.下列命題中,所有真命題的序號(hào)是(3).
(1)函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象一定過定點(diǎn)P(1,3);
(2)函數(shù)f(x-1)的定義域是(1,3),則函數(shù)f(x)的定義域?yàn)椋?,4);
(3)已知函數(shù)f(x)=x2+x+a在(0,1)上有零點(diǎn),則實(shí)數(shù)的取值范圍是(-2,0).

查看答案和解析>>

科目: 來源: 題型:解答題

7.在極坐標(biāo)系中,曲線C的方程為$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求曲線C的參數(shù)方程;
(2)在直角坐標(biāo)系中,點(diǎn)M(x,y)是曲線C上一動(dòng)點(diǎn),求x+y的最大值,并求此時(shí)點(diǎn)M的直角坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+a)-x有且只有一個(gè)零點(diǎn),其中a>0.
(1)求a的值;
(2)設(shè)函數(shù)h(x)=f(x)+x,證明:對?x1,x2∈(-1,+∞)(x1≠x2),不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$恒成立.

查看答案和解析>>

同步練習(xí)冊答案