分析 (1)通過求導(dǎo)得到單調(diào)區(qū)間找到極值點(diǎn)代入即可;(2)不妨設(shè)x1>x2>-1,引進(jìn)新函數(shù)找到其單調(diào)區(qū)間,問題得證.
解答 (1)解:因?yàn)閒(x)=ln(x+a)-x,所以定義域?yàn)椋?a,+∞),
$f'(x)=\frac{1}{x+a}-1=-\frac{x+a-1}{x+a}$.
令f'(x)=0,得x=1-a∈(-a,+∞).
當(dāng)-a<x<1-a時(shí),f'(x)>0,則f(x)在區(qū)間(-a,1-a)上遞增;
當(dāng)x>1-a時(shí),f'(x)<0,則f(x)在區(qū)間(1-a,+∞)上遞減,
∴fmax(x)=f(1-a)=-1+a,由題意知-1+a=0,解得a=1.
(2)證明:由h(x)=f(x)+x,得h(x)=ln(x+1),
不妨令x1>x2>-1.
欲證$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$,
只需證$\frac{{{x_1}-{x_2}}}{{ln({x_1}+1)-ln({x_2}+1)}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$,
只需證$\frac{{(x}_{1}+1)-{(x}_{2}+1)}{ln{(x}_{1}+1)-ln{(x}_{2}+1)}$>$\sqrt{{(x}_{1}+1){(x}_{2}+1)}$,
即證$\sqrt{\frac{{{(x}_{1}+1)}^{2}-2{(x}_{1}+1){(x}_{2}+1){+{(x}_{2}+1)}^{2}}{{(x}_{1}+1){(x}_{2}+1)}}$>ln$\frac{{x}_{1}+1}{{x}_{2}+1}$,
即證$\sqrt{\frac{{x}_{1}+1}{{x}_{2}+1}-2+\frac{{x}_{2}+1}{{x}_{1}+1}}$>ln$\frac{{x}_{1}+1}{{x}_{2}+1}$,
設(shè)t=$\frac{{x}_{1}+1}{{x}_{2}+1}$(t>1),則只需證$\sqrt{t-2+\frac{1}{t}}>lnt(t>1)$,
化簡(jiǎn)得$\frac{t-1}{\sqrt{t}}$>lnt,
設(shè)ω(t)=$\frac{t-1}{\sqrt{t}}$-lnt,則ω′(t)=$\frac{{(\sqrt{t}-1)}^{2}}{2t\sqrt{t}}$>0,
∴ω(t)在(1,+∞)上單調(diào)遞增,
∴ω(t)>ω(1)=0,
即$\frac{t-1}{\sqrt{t}}$>lnt,得證.
點(diǎn)評(píng) 本題考察了導(dǎo)函數(shù),單調(diào)區(qū)間及最值,函數(shù)的零點(diǎn),不等式的證明,是一道較難的綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com