相關(guān)習(xí)題
 0  235626  235634  235640  235644  235650  235652  235656  235662  235664  235670  235676  235680  235682  235686  235692  235694  235700  235704  235706  235710  235712  235716  235718  235720  235721  235722  235724  235725  235726  235728  235730  235734  235736  235740  235742  235746  235752  235754  235760  235764  235766  235770  235776  235782  235784  235790  235794  235796  235802  235806  235812  235820  266669 

科目: 來(lái)源: 題型:選擇題

2.下列雙曲線中,焦點(diǎn)在x軸上且漸近線方程為y=±$\frac{1}{4}$x的是( 。
A.x2-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{y}^{2}}{16}$-x2=1D.y2-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.命題“?x0∈R,x02-x0+1<0”的否定是( 。
A.?x0∈R,x02-x0+1≥0B.?x0∉R,x02-x0+1≥0
C.?x∈R,x2-x+1≥0D.?x∉R,x2-x+1≥0

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.如圖所示,在四棱錐A-BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點(diǎn),AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點(diǎn)G,使得二面角D-BG-E的大小為$\frac{π}{3}$?若存在,求$\frac{AG}{AE}$的值;若不存在,說明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.如圖所示,三棱柱A1B1C1-ABC的側(cè)棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中點(diǎn).
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點(diǎn)E,使C1E∥平面A1BD?并證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,若在C上存在一點(diǎn)P,使得PO=$\frac{1}{2}$|F1F2|(O為坐標(biāo)原點(diǎn)),且直線OP的斜率為$\frac{4}{3}$,則,雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.直線ax+y+2=0的傾斜角為135°,則a=1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.在三棱錐P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,BC=2,則三棱錐P-ABC的外接球的表面積的最小值為( 。
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.求滿足下列條件的直線方程:
(1)已知A(2,2)和直線l:3x+4y-20=0,求過A和直線l垂直的直線方程;
(2)求過定點(diǎn)P(2,3)且在兩坐標(biāo)軸上的截距相等的直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.下列說法錯(cuò)誤的是( 。
A.命題“若x2-5x-6=0”則“x=2”的逆否命題是“若x≠2”則“x2-5x-6≠0”
B.若命題p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,則¬p:對(duì)任意x∈R,x2+x+1≥0
C.若x,y∈R,則x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要條件
D.已知命題p和q,若“p或q”為假命題,則命題p和q中必一真一假

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow$=(sinx,2cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,則實(shí)數(shù)m的最小值為( 。
A.0B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案