相關(guān)習(xí)題
 0  235589  235597  235603  235607  235613  235615  235619  235625  235627  235633  235639  235643  235645  235649  235655  235657  235663  235667  235669  235673  235675  235679  235681  235683  235684  235685  235687  235688  235689  235691  235693  235697  235699  235703  235705  235709  235715  235717  235723  235727  235729  235733  235739  235745  235747  235753  235757  235759  235765  235769  235775  235783  266669 

科目: 來源: 題型:選擇題

3.曲線y=$\frac{x}{2x-1}$在點(1,1)處的切線方程為(  )
A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=0

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,連接橢圓的四個頂點得到的菱形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)已知O為坐標(biāo)原點,點P是圓C1:x2+y2=$\frac{5}{3}$上的點,過P作圓的切線交橢圓于M,N兩點,求△OMN面積的最大值,并求出面積最大值時切線的斜率.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知傾斜角為60°的直線l過點(0,-2$\sqrt{3}$)和橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,且橢圓的離心率為$\frac{\sqrt{6}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(-3,0)點的直線l與橢圓相交于A,B兩點,若以線段A,B為直徑的圓過橢圓的左焦點,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

10.不等式選講已知函數(shù)f(x)=|2x+a|-a
(1)當(dāng)a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x-1|,當(dāng)x∈R時f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ax+lnx-1,其中a為常數(shù)
(1)當(dāng)$a∈(-∞,-\frac{1}{e})$時,若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值;
(2)當(dāng)$a=-\frac{1}{e}$時,若$g(x)=|{f(x)}|-\frac{lnx}{x}-\frac{2}$存在零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點F(1,0),長軸的左、右端點分別為A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求橢圓E的方程;
(2)已知點B(0,-1),經(jīng)過點(1,1)且斜率為k的直線與橢圓E交于不同的兩P、Q點(均異于點B),證明:直線BP與BQ的斜率之和為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)函數(shù)$f(x)=cosxsinx-{sin^2}x-\frac{1}{2}$
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若$f(α)=\frac{{3\sqrt{2}}}{10}-1$,且$α∈(\frac{π}{8},\frac{3π}{8})$,求$f(α-\frac{π}{8})的值$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知數(shù)列{an}滿足:$a_n^2={a_{n-1}}•{a_{n+1}}(n≥2)$且a2+2a1=4,$a_3^2={a_5}$.
(1)求數(shù)列{an}的通項公式;
(2)若bn=nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,其中四邊形ABCD為正方形,△PAD為等邊三角形,AB=2,則四棱錐P-ABCD外接球的體積為$\frac{{28\sqrt{21}}}{27}π$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)$f(x)={e^x}+\frac{1}{e^x}$,則使得f(2x)>f(x+3)成立的x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

同步練習(xí)冊答案