5.已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,其中四邊形ABCD為正方形,△PAD為等邊三角形,AB=2,則四棱錐P-ABCD外接球的體積為$\frac{{28\sqrt{21}}}{27}π$.

分析 利用勾股定理,建立方程,即可求出R,即可求出四棱錐P-ABCD的外接球的體積.

解答 解:O是四棱錐P-ABCD的外接球(半徑為R)的球心,則|OA|=|OP|=R.
設(shè)O到平面ABCD的距離為h,則
${h}^{2}+2=1+(\sqrt{3}-h)^{2}={R}^{2}$,
∴H=$\frac{\sqrt{3}}{3}$,R=$\sqrt{\frac{7}{3}}$,
∴四棱錐P-ABCD的外接球的體積為$\frac{4}{3}π•(\sqrt{\frac{7}{3}})^{3}$=$\frac{{28\sqrt{21}}}{27}π$.
故答案為$\frac{{28\sqrt{21}}}{27}π$.

點評 本題考查四棱錐P-ABCD的外接球的表面積,考查學生的計算能力,正確求出四棱錐P-ABCD的外接球的半徑是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知α,β是兩個不同的平面,l,m是兩條不同直線,l⊥α,m?β.給出下列命題:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;  ④l⊥β⇒m∥α.
其中正確的命題是①④. (填寫所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}({x≤0})\\{x^2}({x>0})\end{array}\right.$若函數(shù)g(x)=f(x)-k(x-1)有且只有一個零點,則實數(shù)k的取值范圍是k<-1或k=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={x|x=3n+1,n∈N},B={4,5,6,7,8},則集合(∁RA)∩B中元素的個數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ mx-y≤0\end{array}\right.$若2x-y的最大值是2,則約束條件表示的平面區(qū)域面積為( 。
A.$\frac{8}{15}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.不等式選講已知函數(shù)f(x)=|2x+a|-a
(1)當a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x-1|,當x∈R時f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,且a3+a6=4,S5=-5.
(1)求數(shù)列{an}的通項公式;
(2)若Tn=|a1|+|a2|+|a3|+…+|an|,求T5的值和Tn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知x+y=2(x>0,y>0),則${x^2}+{y^2}+4\sqrt{xy}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在面積為S的△ABC的邊AB含任取一點P,則△PBC的面積大于$\frac{S}{4}$的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案