分析 利用勾股定理,建立方程,即可求出R,即可求出四棱錐P-ABCD的外接球的體積.
解答 解:O是四棱錐P-ABCD的外接球(半徑為R)的球心,則|OA|=|OP|=R.
設(shè)O到平面ABCD的距離為h,則
${h}^{2}+2=1+(\sqrt{3}-h)^{2}={R}^{2}$,
∴H=$\frac{\sqrt{3}}{3}$,R=$\sqrt{\frac{7}{3}}$,
∴四棱錐P-ABCD的外接球的體積為$\frac{4}{3}π•(\sqrt{\frac{7}{3}})^{3}$=$\frac{{28\sqrt{21}}}{27}π$.
故答案為$\frac{{28\sqrt{21}}}{27}π$.
點評 本題考查四棱錐P-ABCD的外接球的表面積,考查學生的計算能力,正確求出四棱錐P-ABCD的外接球的半徑是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{15}$ | B. | $\frac{8}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com