相關習題
 0  235577  235585  235591  235595  235601  235603  235607  235613  235615  235621  235627  235631  235633  235637  235643  235645  235651  235655  235657  235661  235663  235667  235669  235671  235672  235673  235675  235676  235677  235679  235681  235685  235687  235691  235693  235697  235703  235705  235711  235715  235717  235721  235727  235733  235735  235741  235745  235747  235753  235757  235763  235771  266669 

科目: 來源: 題型:解答題

13.已知全集為全體實數(shù)R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$=1,且|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k>0),令f(k)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求f(k)=$\overrightarrow{a}$•$\overrightarrow$(用k表示);
(Ⅱ)若f(k)≥x2-2tx-$\frac{1}{2}$對任意k>0,任意t∈[-1,1]恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.據(jù)調查分析,若干年內某產品關稅與市場供應量P的關系近似地滿足:y=P(x)=2${\;}^{(1-kt)(x-b)^{2}}$,(其中,t為關稅的稅率,且t∈[0,$\frac{1}{2}$),x為市場價格,b,k為正常數(shù)),當t=$\frac{1}{8}$時的市場供應量曲線如圖.
(Ⅰ)根據(jù)圖象求b,k的值;
(Ⅱ)若市場需求量為Q(x)=2${\;}^{11-\frac{t}{2}}$,當p=Q時的市場價格稱為市場平衡價格,當市場平衡價格保持在10元時,求稅率t的值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)定義在區(qū)間(-1,1)內,對于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當x<0時,f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調性,并加以證明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

科目: 來源: 題型:解答題

9.計算:已知角α終邊上的一點P(7m,-3m)(m≠0).
(Ⅰ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值;
(Ⅱ)求2+sinαcosα-cos2α的值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知直線y=a(0<a<1)與函數(shù)f(x)=sinωx在y軸右側的前12個交點橫坐標依次為x1,x2,x3,…,x12,且x1=$\frac{π}{4}$,x2=$\frac{3π}{4}$,x3=$\frac{9π}{4}$,則x1+x2+x3+…+x12=66π.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若角α和β的終邊關于直線x+y=0對稱,且α=-$\frac{π}{3}$,則角β的集合是{ β|β=2kπ-$\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{8}$))=$\frac{1}{8}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{x-1}$-2sinπx(-3≤x≤5)的所有零點之和等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=logab($\frac{1}{a}$+$\frac{1}$),z=logba,則(  )
A.y<xzB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

同步練習冊答案