相關(guān)習(xí)題
 0  235572  235580  235586  235590  235596  235598  235602  235608  235610  235616  235622  235626  235628  235632  235638  235640  235646  235650  235652  235656  235658  235662  235664  235666  235667  235668  235670  235671  235672  235674  235676  235680  235682  235686  235688  235692  235698  235700  235706  235710  235712  235716  235722  235728  235730  235736  235740  235742  235748  235752  235758  235766  266669 

科目: 來源: 題型:選擇題

3.若變量x,y滿足$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+1≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設(shè)a,b∈R,則“a+b≥4”是“a≥2且b≥2”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知M={x|0<x<2},N={x|y=lg(x-1)},則M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知f(x)=|x-a|+|x-3|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐標(biāo)原點O為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C2的方程為ρ(cosθ-msinθ)+1=0(m為常數(shù)).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)設(shè)P點是C1上到x軸距離最小的點,當(dāng)C2過點P時,求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-$\frac{a}{x}$,a,f(x)為實數(shù).
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上存在極值點,且極值大于ln4+2,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,P是直線x=4上一動點,以P為圓心的圓Γ經(jīng)定點B(1,0),直線l是圓Γ在點B處的切線,過A(-1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點.
(1)求證:|EA|+|EB|為定值;
(2)設(shè)直線l交直線x=4于點Q,證明:|EB|•|FQ|=|BF•|EQ|.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,以A,B,C,D,E為頂點的六面體中,△ABC和△ABD均為正三角形,且平面ABC⊥平面ABD,EC⊥面ABC,EC=$\frac{{\sqrt{3}}}{2}$,AB=2.
(1)求證:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.張老師 上班,有路線①與路線②兩條路線可供選擇.
路線①:沿途有A,B兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為$\frac{1}{2},\frac{2}{3}$,若A處遇到紅燈或黃燈,則導(dǎo)致延誤時間2分鐘;若B處遇到紅燈或黃燈,則導(dǎo)致延誤時間3分鐘;若兩處都遇到綠燈,則全程所花時間為20分鐘.
路線②:沿途有a,b兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為$\frac{3}{4}\frac{2}{5}$,若a處遇到紅燈或黃燈,則導(dǎo)致延誤時間8分鐘;若b處遇到紅燈或黃燈,則導(dǎo)致延誤時間5分鐘;若兩處都遇綠燈,則全程所化時間為15分鐘.
(1)若張老師選擇路線①,求他20分鐘能到校的概率;
(2)為使張老師日常上班途中所花時間較少,你建議張老師選擇哪條路線?說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}中,b1=1,b2=2,從數(shù)列{an}中取出第bn項記為cn,若{cn}是等比數(shù)列,求{bn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案