相關(guān)習(xí)題
 0  235560  235568  235574  235578  235584  235586  235590  235596  235598  235604  235610  235614  235616  235620  235626  235628  235634  235638  235640  235644  235646  235650  235652  235654  235655  235656  235658  235659  235660  235662  235664  235668  235670  235674  235676  235680  235686  235688  235694  235698  235700  235704  235710  235716  235718  235724  235728  235730  235736  235740  235746  235754  266669 

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,則f(5)的值為(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

2.對(duì)于任何集合S,用|S|表示集合S中的元素個(gè)數(shù),用n(S)表示集合S的子集個(gè)數(shù).若集合A,B滿足條件:|A|=2017,且n(A)+n(B)=n(A∪B),則|A∩B|等于(  )
A.2017B.2016C.2015D.2014

查看答案和解析>>

科目: 來源: 題型:填空題

1.若函數(shù)y=f(x)的定義域?yàn)閇1,5],則函數(shù)y=f(2x-1)+(2x+1)的定義域[1,2].

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+4x-1.
(1)當(dāng)a=1時(shí),對(duì)任意x1,x2∈R,且x1≠x2,試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{f({x}_{1})+f({x}_{2})}{2}$的大;
(2)對(duì)于給定的正實(shí)數(shù)a,有一個(gè)最小的負(fù)數(shù)g(a),使得x∈[g(a),0]時(shí),-3≤f(x)≤3都成立,則當(dāng)a為何值時(shí),g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,P,Q分別是AA1,B1C1上的點(diǎn),且AP=3A1P,B1C1=4B1Q.
(1)求證:PQ∥平面ABC1
(2)若AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,求證:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知半徑為$\sqrt{5}$,圓心在直線l1:x-y+1=0上的圓C與直線l2:$\sqrt{3}$x-y+1-$\sqrt{3}$=0相交于M,N兩點(diǎn),且|MN|=$\sqrt{17}$
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)圓心C的橫、縱坐標(biāo)均為整數(shù)時(shí),若對(duì)任意m∈R,直線l3:mx-y+$\sqrt{a}$+1=0與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=logax(a>0且a≠1)在區(qū)間[1,2]上的最大值與函數(shù)g(x)=-$\frac{4}{x}$在區(qū)間[1,2]上的最大值互為相反數(shù).
(1)求a的值;
(2)若函數(shù)F(x)=f(x2-mx-m)在區(qū)間(-∞,1-$\sqrt{3}$)上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知集合A={x|y=$\sqrt{m+1-x}$},B={x|x<-4或x>2}
(1)若m=-2,求A∩(∁RB);
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

14.函數(shù)f(x)=(2x-2)2+(2-x+2)2-10在區(qū)間[1,2]上的最大值與最小值之積為$\frac{15}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案