分析 (1)在BB1取點E,使BE=3EB1,連結PE、QE,推導出平面ABC1∥平面PQE,由此能證明PQ∥平面ABC1.
(2)推導出AB⊥CC1,BC⊥CC1,AB⊥AC,從而AB⊥平面AA1C1C,由此能證明平面ABC1⊥平面AA1C1C.
解答 證明:(1)在BB1取點E,使BE=3EB1,連結PE、QE,
∵在直三棱柱ABC-A1B1C1中,P,Q分別是AA1,B1C1上的點,且AP=3A1P,B1C1=4B1Q,
∴PE∥AB,QE∥BC1,
∵AB∩BC1=B,PE∩QE=E,AB、BC1?平面ABC1,
PE、QE?平面PQE,
∴平面ABC1∥平面PQE,
∵PQ?平面PQE,∴PQ∥平面ABC1.
解:(2)∵在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴AB⊥CC1,BC⊥CC1,
∵AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,
∴AB=AA1=CC1=$\sqrt{13-9}$=2,AC=$\sqrt{A{{C}_{1}}^{2}-C{{C}_{1}}^{2}}$=$\sqrt{9-4}$=$\sqrt{5}$,
∴AB2+AC2=BC2,∴AB⊥AC,
又AC∩CC1=C,∴AB⊥平面AA1C1C,
∵AB?平面ABC1,∴平面ABC1⊥平面AA1C1C.
點評 本題考查線面平行、面面垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | g(x)是奇函數 | B. | g(x)的圖象關于直線x=-$\frac{π}{4}$對稱 | ||
C. | g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上的增函數 | D. | 當x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時,g(x)的值域是[-2,1] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com