相關(guān)習(xí)題
 0  235551  235559  235565  235569  235575  235577  235581  235587  235589  235595  235601  235605  235607  235611  235617  235619  235625  235629  235631  235635  235637  235641  235643  235645  235646  235647  235649  235650  235651  235653  235655  235659  235661  235665  235667  235671  235677  235679  235685  235689  235691  235695  235701  235707  235709  235715  235719  235721  235727  235731  235737  235745  266669 

科目: 來源: 題型:填空題

3.如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=$\frac{6}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.若(x2+1)(x-3)9=ao+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,則a1+a2+…+a11=5.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.以下說法正確的是( 。
①若x,y∈R,則“x=y“是“$xy≥{(\frac{x+y}{2})^2}$“的充要條件.
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
③“x2+2x≥ax在x∈[1,2]恒成立”?“對于x∈[1,2],有(x2+2x)min≥(ax)max
④命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題為真命題.
A.①②B.①②④C.①③D.②④

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知離散型隨機變量X的分布列如表所示,則D(X)=( 。
X-101

P
$\frac{1}{2}$$1-\frac{3}{2}q$q2
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{17}{16}$D.$\frac{11}{16}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.$C_{27}^1+C_{27}^2+C_{27}^3+…+C_{27}^{27}$除以9的余數(shù)為(  )
A.2B.4C.7D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知隨機變量X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,則P(X=2)=( 。
A.$\frac{13}{15}$B.$\frac{2}{81}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.若把英文單詞“error”中的字母的拼寫順序?qū)戝e了,則可能出現(xiàn)錯誤的種數(shù)是( 。
A.20種B.19種C.10種D.9種

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知${(2{x^3}-\frac{1}{x})^n}$的展開式的常數(shù)項是第7項,則正整數(shù)n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,${a_1}=-\frac{2}{3}$,滿足${S_n}+\frac{1}{S_n}+2={a_n}(n≥2)$.
(1)計算S1,S2,S3,猜想Sn的一個表達式(不需要證明).
(2)設(shè)${b_n}=\frac{S_n}{{{n^2}+n}}$,數(shù)列{bn}的前n項和為Tn,求證:${T_n}>-\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.對武漢市工薪階層關(guān)于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了50人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如表:
月收入(百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)3812421
(1)從這50人是否贊成“樓市限購政策”采取分層抽樣,抽取一個容量為10的樣本,問樣本中贊成與不贊成“樓市限購政策”的人數(shù)各有多少名?
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2*2的列聯(lián)表,并回答是否有95%的把握認為月收入以55百元為分界點對“樓市限購政策”的態(tài)度有差異?
月收入低于55百元人數(shù)月收入不低于55百元人數(shù)合計
贊成a=27b=330
不贊成c=13d=720
合計401040
(參考公式:${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P( K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

同步練習(xí)冊答案