2.若(x2+1)(x-3)9=ao+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,則a1+a2+…+a11=5.

分析 由(x2+1)(x-3)9=ao+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,令x=2,解得a0=-5.令x=3,則a0+a1+a2+…+a11=0.即可得出.

解答 解:∵(x2+1)(x-3)9=ao+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11
令x=2,則(22+1)×(2-3)9=a0,解得a0=-5.
令x=3,則(32+1)×(3-3)9=a0+a1+a2+…+a11=0.
則a1+a2+…+a11=5.
故答案為:5.

點評 本題考查了二項式定理的應用、方程思想,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,若a=1,b=2,cosA=$\frac{2\sqrt{2}}{3}$,則sinB=( 。
A.$\frac{\sqrt{2}}{6}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知全集U=R,集合M={x|-2≤x≤5},N={x|a+1≤x≤2a+1}.
(Ⅰ)若a=2,求M∩(∁RN);
(Ⅱ)若M∪N=M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.下表是某地銀行連續(xù)五年的儲蓄存款(年底余額),假設(shè)儲蓄存款y關(guān)于年份x的線性回歸方程為 $\hat y=\hat bx+\hat a$,則$\hat b$=1.2.
($\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,其中1×5+2×6+3×7+4×8+5×10=120,12+22+32+42+52=55)
年份x12345
儲蓄存款y(千億元)567810

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若把英文單詞“error”中的字母的拼寫順序?qū)戝e了,則可能出現(xiàn)錯誤的種數(shù)是( 。
A.20種B.19種C.10種D.9種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某市教育局為了了解高三學生體育達標情況,對全市高三學生進行了體能測試,經(jīng)分析,全市學生體能測試成績X服從正態(tài)分布N(80,σ2)(滿分為100分),已知P(X<75)=0.3,P(X≥95)=0.1,現(xiàn)從該市高三學生中隨機抽取3位同學.
(1)求抽取的三位同學該次體能測試成績在區(qū)間[80,85),[85,95),[95,100)各有一位同學的概率;
(2)記抽到的3位同學該次體能測試成績在區(qū)間[75,85]內(nèi)的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知點M(x,1)在角θ的終邊上,且$cosθ=\frac{{\sqrt{2}}}{2}x$,則x=(  )
A.1B.-1C.1或-1D.-1或0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)i為虛數(shù)單位,$\overline z$表示復數(shù)z的共軛復數(shù),若z=1+i,則$-i•z+i•\overline z$等于(  )
A.-2B.-2iC.2D.2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一個圓錐的側(cè)面展開圖是一個半徑為2的半圓,則該圓錐的體積為( 。
A.2$\sqrt{3}$πB.$\sqrt{3}$πC.$\frac{2\sqrt{3}π}{3}$D.$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

同步練習冊答案