相關(guān)習(xí)題
 0  235115  235123  235129  235133  235139  235141  235145  235151  235153  235159  235165  235169  235171  235175  235181  235183  235189  235193  235195  235199  235201  235205  235207  235209  235210  235211  235213  235214  235215  235217  235219  235223  235225  235229  235231  235235  235241  235243  235249  235253  235255  235259  235265  235271  235273  235279  235283  235285  235291  235295  235301  235309  266669 

科目: 來源: 題型:解答題

6.設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,等比數(shù)列{bn}的公比為q.已知b1=a1,b2=2,q=d,且d>1,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)y=2${\;}^{-{x^2}+ax-1}}$在[-1,1]上是增函數(shù),則a的取值范圍是{a|a≥2}.

查看答案和解析>>

科目: 來源: 題型:填空題

4.計算($\root{3}{2}$)6-$\frac{7}{5}$×($\frac{49}{25}$)${\;}^{-\frac{1}{2}}}$-3π0+$\frac{{\sqrt{a\sqrt{a}}}}{{\root{4}{a^3}}}$=1.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知平面α∥平面β,A,C∈α,B,D∈β,直線AB與CD交于點(diǎn)S,且AS=9,BS=8,CD=34,
(1)當(dāng)S在α,β之間時,CS長多少?
(2)當(dāng)S不在α,β之間時,CS長又是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4.
(1)求a,b的值;    
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某學(xué)校研究性學(xué)習(xí)課題組為了研究學(xué)生的數(shù)學(xué)成績優(yōu)秀和物理成績優(yōu)秀之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(百分制)如表所示:
序號1234567891011121314151617181920
數(shù)學(xué)9575809492656784987167936478779057927293
物理9063729291715891938177824891699661847893
規(guī)定:數(shù)學(xué)、物理成績90分(含90分)以上為優(yōu)秀.
(Ⅰ)根據(jù)上表完成下面的2×2列聯(lián)表,并說明能否有99%的把握認(rèn)為學(xué)生的數(shù)學(xué)成績優(yōu)秀與物理成績優(yōu)秀之間有關(guān)系?
優(yōu)秀不優(yōu)秀合計
優(yōu)秀628
不優(yōu)秀21012
合計81220
(Ⅱ)記數(shù)學(xué)、物理成績均優(yōu)秀的6名學(xué)生為A、B、C、D、E、F,現(xiàn)從中選2名學(xué)生進(jìn)行自主招生培訓(xùn),求A、B兩人中至少有一人被選中的概率.
參考公式及數(shù)據(jù):K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.10.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖1,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的“特征三角形”.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.若橢圓C1:$\frac{{x}^{2}}{4}$+y2=1,直線L:y=mx+n
(1)已知橢圓D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)與橢圓C1是相似橢圓,求b的值及橢圓D與橢圓C1的相似比;
(2)求點(diǎn)P(0,1)到橢圓C1上點(diǎn)的最大距離
(3)如圖2,設(shè)直線L與橢圓E:$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{{λ}^{2}}$=1(λ>1)相交于A、B兩點(diǎn),與橢圓C1交于C、D兩點(diǎn),求證:|AC|=|BD|

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知|$\overrightarrow{a}$|=6,$\overrightarrow{e}$為單位向量,當(dāng)$\overrightarrow{a}$與$\overrightarrow{e}$之間的夾角為120°時,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影為-3.

查看答案和解析>>

科目: 來源: 題型:解答題

18.求函數(shù)y=x2-2x+5,x∈[-1,2]的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1(x<1)\\-x+3(x≥1)\end{array}\right.$,則$f[f(\frac{5}{2})]$=(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案