3.已知平面α∥平面β,A,C∈α,B,D∈β,直線AB與CD交于點(diǎn)S,且AS=9,BS=8,CD=34,
(1)當(dāng)S在α,β之間時,CS長多少?
(2)當(dāng)S不在α,β之間時,CS長又是多少?

分析 由平面α∥平面β,且A、C∈α,B、D∈β,直線AB與CD交于點(diǎn)S,根據(jù)平面與平面平行的性質(zhì)定理可得:兩條交線應(yīng)該平行,連接AC、BD,即AC∥BD,則△SAC∽△SBD,又根據(jù)相似比的概念及AS=9,BS=8,CD=34,可得:(1)SC=18;(2)SC=306.

解答 解:∵平面α∥平面β,A、C∈α,B、D∈β,直線AB與CD交于點(diǎn)S,
∴根據(jù)平面與平面平行的性質(zhì)定理可得:AC∥BD,
∴△SAC∽△SBD,
(1)$\frac{SC}{SD}=\frac{AS}{SB}$=$\frac{9}{8}$,且SC+SD=CD=34,
則:SC=18;
(2)$\frac{SC}{SD}=\frac{AS}{SB}=\frac{9}{8}$,且SC-SD=CD=34,
則:SC=306.

點(diǎn)評 本題主要考查了空間中直線與平面平行的性質(zhì),相似三角形的判定,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c.已知$asinB=\sqrt{3}bcosA$.
(1)求角A的大;
(2)若$a=\sqrt{7},b=2$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( 。
A.y=-2x+1B.y=$\frac{1}{3}$x2+1C.y=-x2-x-1D.y=x2-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.${∫}_{-1}^{1}$x2dx=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)y=x2-2x+5,x∈[-1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了了解某學(xué)校高二年級學(xué)生的物理成績,從中抽取n名學(xué)生的物理成績(百分制)作為樣本,按成績分成 5組:[50,60),[60,70),[70,80),[80,90),[90,100],頻率分布直方圖如圖所示,成績落在[70,80)中的人數(shù)為20.
(1)求a和n的值;
(2)設(shè)成績在80分以上(含80分)為優(yōu)秀,已知樣本中成績落在[50,80)中的男、女生人數(shù)比為1:2,成績落在[80,100]中的男、女生人數(shù)比為3:2,請完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為物理成績優(yōu)秀與性別有關(guān).
參考公式和數(shù)據(jù):K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.500.050.0250.005
k0.4553.8415.0247.879
男生女生合計
優(yōu)秀
不優(yōu)秀
合計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.兩個數(shù)120,168的最大公約數(shù)是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12. 如圖,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,四邊形ACED的面積為$\frac{3}{2}$,F(xiàn)為BC的中點(diǎn),
(1)求證:AF∥平面BDE;
(2)求證:平面BDE⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x的函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+2a)在[1,+∞)上為減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.(-1,+∞)C.(-1,2]D.(-∞,-1)

查看答案和解析>>

同步練習(xí)冊答案