相關(guān)習題
 0  234945  234953  234959  234963  234969  234971  234975  234981  234983  234989  234995  234999  235001  235005  235011  235013  235019  235023  235025  235029  235031  235035  235037  235039  235040  235041  235043  235044  235045  235047  235049  235053  235055  235059  235061  235065  235071  235073  235079  235083  235085  235089  235095  235101  235103  235109  235113  235115  235121  235125  235131  235139  266669 

科目: 來源: 題型:解答題

17.求值化簡:
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知集合A={x∈Z|-1<x<3},B={x∈R|x2+x-6<0},則A∩B=( 。
A.{x|-1<x<2}B.{x|-3<x<3}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知x∈R,則“x2-3x≤0”是“(x-1)(x-2)≤0成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

14.如圖,在△APC中,點B是AC中點,AC=2,∠APB=90°,∠BPC=45°,則$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.對于二次函數(shù)y=-$\frac{1}{4}$x2+x-4,下列說法正確的是( 。
A.當x>0時,y隨x的增大而增大B.當x=2時,y有最大值-3
C.圖象的頂點坐標為(-2,-7)D.圖象與x軸有兩個交點

查看答案和解析>>

科目: 來源: 題型:選擇題

12.函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過點(-4,6),則下列各點中在y=$\frac{k}{x}$圖象上的是( 。
A.(3,8)B.(3,-8)C.(-8,-3)D.(-4,-6)

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1.
(1)求f(-$\frac{π}{24}$)的值.
(2)若x∈(0,π)求函數(shù)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,若a1=1,an=3Sn-1+4(n≥2).
(1)求數(shù)列{an}的通項公式,
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N+,記數(shù)列{cn}的前項和為Tn,是否存在k∈N+,使得Tn≥Tk恒成立,若存在這樣的k的值,請求出;若不存在這樣的k的值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2bx-4a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(3)設(shè)f(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知f(x)=(a2-2a-2)x是增函數(shù),則實數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

同步練習冊答案