相關習題
 0  234100  234108  234114  234118  234124  234126  234130  234136  234138  234144  234150  234154  234156  234160  234166  234168  234174  234178  234180  234184  234186  234190  234192  234194  234195  234196  234198  234199  234200  234202  234204  234208  234210  234214  234216  234220  234226  234228  234234  234238  234240  234244  234250  234256  234258  234264  234268  234270  234276  234280  234286  234294  266669 

科目: 來源: 題型:填空題

11.$\frac{{cos{{36}°}\sqrt{1-sin{{18}°}}}}{{cos{{18}°}}}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.以下4個命題:
①若實數(shù)a、b、c滿足b2=ac,則a、b、c成等比數(shù)列;
②定積分$\int_1^2{({e^x}+\frac{1}{x})dx}$的值為e2-e+ln2;
③兩直線(a+2)x+(1-a)y-1=0與(a-1)x+(2a+3)y+2=0相互垂直的充要條件是a=-1;
④點P是△ABC內一點,且$\overrightarrow{AP}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,則△ABP與△ABC的面積之比為$\frac{1}{3}$.
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在等差數(shù)列{an}中,a1>0,且3a8=5a7,則前n項和Sn中最大的是( 。
A.S5B.S6C.S7D.S8

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知中心在原點O,焦點在x軸上的橢圓,離心率e=$\frac{1}{2}$,且橢圓過點(1,$\frac{3}{2}$).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓左,右焦點分別為F1,F(xiàn)2,過F2的直線l與橢圓交于不同的兩點A、B.
(1)求△F1AB面積的最大值;
(2)△F1AB的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線l方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知點P(2,0),圓C的圓心在直線x-y-5=0上且與y軸切于點M(0,-2).
(1)求圓C的標準方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,過點P的直線l垂直平分弦AB,這樣的實數(shù)a是否存在,若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

6.數(shù)列{an}前n項和為Sn,且an+Sn=-2n-1(n∈N*).
(1)證明數(shù)列{an+2}為等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)若${b_n}={log_2}\frac{1}{{{a_n}+2}}$,證明:$\sum_{k=1}^n{\frac{1}{{{b_k}{b_{k+1}}}}}<1$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估平均數(shù)與中位數(shù)分別是( 。
A.12.5、12.5B.12.5、13C.13、12.5D.13、13

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若函數(shù)y=f(x)的定義域是[0,4],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域為( 。
A.[0,8]B.[0,1)∪(1,2]C.[0,2]D.[0,1)∪(1,8]

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設集合A={-1,0,1,3,4},B={0,1,3},則∁AB=(  )
A.{3}B.{0,3}C.{-1,4}D.{0,3,4}

查看答案和解析>>

科目: 來源: 題型:選擇題

2.一個幾何體的三視圖所示,在該幾何體的各個面中,最大面積與最小面積之比為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步練習冊答案