相關習題
 0  233912  233920  233926  233930  233936  233938  233942  233948  233950  233956  233962  233966  233968  233972  233978  233980  233986  233990  233992  233996  233998  234002  234004  234006  234007  234008  234010  234011  234012  234014  234016  234020  234022  234026  234028  234032  234038  234040  234046  234050  234052  234056  234062  234068  234070  234076  234080  234082  234088  234092  234098  234106  266669 

科目: 來源: 題型:選擇題

17.在實數(shù)的原有運算法則中,我們補充定義新運算“⊕”如下:當a≥b時,a⊕b=a;當a<b時,a⊕b=b.則函數(shù)f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍為通常的乘法和減法)(  )
A.-1B.1C.2D.12

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,若關于的方程f(x)=a恰有3個不同的實數(shù)解x1、x2、x3,則x1+x2+x3的取值范圍是(  )
A.(-∞,0)B.(0,1)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.三個數(shù)a=$\sqrt{0.31}$,b=log20.31,c=20.31之間的大小關系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目: 來源: 題型:解答題

14.求滿足下列條件的概率:
(1)若mn都是從集合{1,2,3}中任取的數(shù)字,求函數(shù)f(x)=x2-4mx+4n2有零點的概率;
(2)若mn都是從區(qū)間[1,4]中任取的數(shù)字,在區(qū)間[0,4]內(nèi)任取個實數(shù)x,y,求事件“x2+y2>(m-n)2恒成立”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

13.根據(jù)下面的要求,求滿足1+2+3+…+n>2016的最小的自然數(shù)n.
(1)完成執(zhí)行該問題的程序框圖;
(2)如圖是解決該問題對應的程序語句,請補充完整.

查看答案和解析>>

科目: 來源: 題型:填空題

12.某程序框圖如圖所示,若該程序運行后輸出n的值是4,則自然數(shù)S0的值為1

查看答案和解析>>

科目: 來源: 題型:選擇題

11.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則方程組$\left\{\begin{array}{l}{ax+by=3}\\{2x+4y=7}\end{array}\right.$只有一組解的概率為( 。
A.$\frac{11}{12}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)求過點A的圓M的切線方程;
(2)設平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知A(-1,0),B(0,2),動點P(x,y),S△PAB=S.
(1)若l∥AB,且l與AB的距離為$\frac{2\sqrt{5}}{5}$,求l的方程;
(2)若x∈[0,2],y∈[0,2],求S≤1的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

8.為了解甲、乙兩校高二年級學生某次期末聯(lián)考物理成績情況,從這兩學校中分別隨機抽取30名高二年級的物理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若乙校高二年級每位學生被抽取的概率為0.15,求乙校高二年級學生總人數(shù);
(2)根據(jù)莖葉圖,對甲、乙兩校高二年級學生的物理成績進行比較,寫出兩個統(tǒng)計結論(不要求計算);
(3)從樣本中甲、乙兩校高二年級學生物理成績不及格(低于60分為不及格)的學生中隨機抽取2人,求至少抽到一名乙校學生的概率.

查看答案和解析>>

同步練習冊答案