相關(guān)習(xí)題
 0  233763  233771  233777  233781  233787  233789  233793  233799  233801  233807  233813  233817  233819  233823  233829  233831  233837  233841  233843  233847  233849  233853  233855  233857  233858  233859  233861  233862  233863  233865  233867  233871  233873  233877  233879  233883  233889  233891  233897  233901  233903  233907  233913  233919  233921  233927  233931  233933  233939  233943  233949  233957  266669 

科目: 來源: 題型:填空題

18.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,過它的焦點(diǎn)且垂直于x軸上的弦長是$\frac{9}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.在數(shù)列{an}中,a1=-2101,且當(dāng)2≤n≤100時,an+2a102-n=3×2n恒成立,則數(shù)列{an}的前100項(xiàng)和S100=-4.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,且a4=7,S4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

15.遞增數(shù)列{an}滿足2an=an-1+an+1,(n∈N*,n>1),其前n項(xiàng)和為Sn,a2+a8=6,a4a6=8,則S10=35.

查看答案和解析>>

科目: 來源: 題型:解答題

14.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•${(\frac{1}{3})^x}$+${(\frac{1}{9})^x}$,
(1)當(dāng)a=-$\frac{1}{2}$時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以4為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
(3)g(x)=$\frac{1-m•{x}^{2}}{1+m•{x}^{2}}$,m>-1,g(x)在[0,1]上的上界為T(m),求T(m)的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.某工廠在甲、乙兩地的兩個分廠各生產(chǎn)某種機(jī)器12臺和6臺,現(xiàn)銷售給A地10臺,B地8臺,已知從甲地調(diào)運(yùn)1臺至A地、B地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從甲地調(diào)運(yùn)x臺至A地,求總費(fèi)用y關(guān)于臺數(shù)x的函數(shù)解析式;
(2)若總運(yùn)費(fèi)不超過9000元,問共有幾種調(diào)運(yùn)方案;
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)f(x)=a-$\frac{2}{{{2^x}+1}}$,x∈R,(其中a為常數(shù)).
(1)若f(x)為奇函數(shù),求a的值;
(2)若不等式f(x)+a>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)=loga(ax2-x+3)(0<a<1)在[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是$\frac{1}{16}<a≤\frac{1}{8}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.定義函數(shù)y=f(x),x∈D(定義域),若存在常數(shù)C,對于任意x1∈D,存在唯一的x2∈D,使得$\frac{{f({x_1})+f({x_2})}}{2}$=C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)在[10,100]上的均值為(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{1}{10}$D.10

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知實(shí)數(shù)a≠0,函數(shù)f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),則a的值為( 。
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

同步練習(xí)冊答案