相關(guān)習(xí)題
 0  233621  233629  233635  233639  233645  233647  233651  233657  233659  233665  233671  233675  233677  233681  233687  233689  233695  233699  233701  233705  233707  233711  233713  233715  233716  233717  233719  233720  233721  233723  233725  233729  233731  233735  233737  233741  233747  233749  233755  233759  233761  233765  233771  233777  233779  233785  233789  233791  233797  233801  233807  233815  266669 

科目: 來源: 題型:選擇題

14.已知偶函數(shù)f(x)(x≠0)的導(dǎo)函數(shù)f′(x),且滿足f(-1)=0,當(dāng)x>0時(shí),2f(x)>xf′(x),則使得f(x)>0成立的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在正三棱錐S-ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長AB=2$\sqrt{2}$,則正三棱錐S-ABC的外接球的體積為(  )
A.$\sqrt{6}π$B.$4\sqrt{3}π$C.$4\sqrt{2}π$D.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(0,-1),且右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3.     
(1)求橢圓的方程;
(2)若直線y=kx+m(k≠0)與橢圓交于不同的兩個(gè)點(diǎn)M,N,當(dāng)|AM|=|AN|時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.某同學(xué)參加科普知識(shí)競(jìng)賽,需回答三個(gè)問題,競(jìng)賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分. 假設(shè)這名同學(xué)每題回答正確的概率均為0.8,且各題回答正確與否相互之間沒有影響.
(1)求這名同學(xué)回答這三個(gè)問題的總得分X的分布列和數(shù)學(xué)期望E(X);
(2)求這名同學(xué)總得分(不為負(fù)分即X≥0)的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.cos$\frac{8π}{3}$=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為多少?
原料限額
A(噸)3212
B(噸)128

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點(diǎn),過E作EF∥AD,將四邊形AEFD沿EF折起使面AEFD⊥面EBCF.
(1)若G為DF的中點(diǎn),求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)關(guān)于x的不等式x(x-a-1)<0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N.
(1)當(dāng)a=1時(shí),求集合M;
(2)若a>-1時(shí),M⊆N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.對(duì)于一組向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么稱$\overrightarrow{{a}_{p}}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求實(shí)數(shù)x的取值范圍;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?給出你的結(jié)論并說明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點(diǎn)列Q1.Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點(diǎn),Q2為$\overrightarrow{{a}_{3}}$的位置向量的終點(diǎn),且Q2k+1與Q2k關(guān)于點(diǎn)Q1對(duì)稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點(diǎn)Q2對(duì)稱,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4-x}{ax}$+lnx.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-$\frac{x}{a}$在區(qū)間(1,3)上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案