相關(guān)習(xí)題
 0  233296  233304  233310  233314  233320  233322  233326  233332  233334  233340  233346  233350  233352  233356  233362  233364  233370  233374  233376  233380  233382  233386  233388  233390  233391  233392  233394  233395  233396  233398  233400  233404  233406  233410  233412  233416  233422  233424  233430  233434  233436  233440  233446  233452  233454  233460  233464  233466  233472  233476  233482  233490  266669 

科目: 來源: 題型:填空題

18.已知兩個等差數(shù)列{an},{bn},它們的前n項和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{29}{38}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,求cos(x+$\frac{π}{3}$)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知f(x)=sinx(cosx+1),則f′($\frac{π}{4}$)$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個增函數(shù);
②若T均是f(x)+g(x)、f(x)+h(x)、g(x)+h(x)的一個周期,則T也均是f(x)、g(x)、h(x)的一個周期,
③若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是奇函數(shù),則f(x)、g(x)、h(x)均是奇函數(shù),
下列上述命題成立的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

14.若A={x|-3≤x≤4},B={x|2m-1≤m+1},B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對任意n∈N+,都有bn+12=bn•bn+2
(I)求數(shù)列{an},{bn}的通項公式;
(II)設(shè){anbn}的前n項和為Tn,若Tn>$\frac{4-λ}{2}$對任意的n∈N+恒成立,求λ得取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(1,$\frac{\sqrt{3}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點P與點Q均在橢圓C上,且P,Q關(guān)于原點對稱,問:橢圓上是否存在點M(點M在第一象限),使得△PQM為等邊三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,已知點F1,F(xiàn)2是橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦點,點P是橢圓C2:$\frac{x^2}{2}$+y2=1上異于其長軸端點的任意動點,直線PF1,PF2與橢圓C1的交點分別是A,B和M,N,記直線AB,MN的斜率分別為k1,k2
(1)求證:k1•k2為定值;
(2)求|AB|•|MN|得取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=AB=2,AB⊥BC,BC=3.
(1)在棱AC上求一點M,使得AB1∥平面BC1M,說明理由;
(2)若D為AC的中點,求四棱錐B-AA1C1D的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.下列四組函數(shù)中,相等的兩個函數(shù)是( 。
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

查看答案和解析>>

同步練習(xí)冊答案