相關(guān)習(xí)題
 0  212238  212246  212252  212256  212262  212264  212268  212274  212276  212282  212288  212292  212294  212298  212304  212306  212312  212316  212318  212322  212324  212328  212330  212332  212333  212334  212336  212337  212338  212340  212342  212346  212348  212352  212354  212358  212364  212366  212372  212376  212378  212382  212388  212394  212396  212402  212406  212408  212414  212418  212424  212432  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=x|x+a|-
1
2
lnx,若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知sin3θ+cos3θ=1,求sinθ+cosθ的值.

查看答案和解析>>

科目: 來源: 題型:

已知定點(diǎn)A(4,0),圓C:x2+y2=4上有一動(dòng)點(diǎn)P,設(shè)M為線段AP上一點(diǎn),且滿足
AM
=2
MP
,求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)f(α)=
sin(2π-α)cos(π+α)cos(
π
2
-α)
cos(π-α)sin(π-α)sin(
2
)
,化簡并求f(
π
4
)的值.

查看答案和解析>>

科目: 來源: 題型:

已知A為△ABC的內(nèi)角,求sinA+2sin2
A
2
的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=
2
3
,an+1=
n
n+1
an,求an

查看答案和解析>>

科目: 來源: 題型:

設(shè)符號(hào)“@”是數(shù)集A中的一種運(yùn)算,如果對于任意x,y∈A,都有x@y∈A,則稱運(yùn)算@對集合A是封閉的.設(shè)A=(x|x=m+
2
n,m,n∈Z),判斷A對通常的實(shí)數(shù)的乘法運(yùn)算是否封閉.

查看答案和解析>>

科目: 來源: 題型:

我們將不與拋物線對稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)稱為切點(diǎn).解決下列問題:已知拋物線x2=2py(p>0)上的點(diǎn)(x0,3)到焦點(diǎn)的距離等于4,直線l:y=kx+b與拋物線相交于不同的兩點(diǎn)A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值).設(shè)線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的拋物線的切點(diǎn)為C.
(1)求出拋物線方程,并寫出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用k、b表示出C點(diǎn)、D點(diǎn)的坐標(biāo),并證明CD垂直于x軸;
(3)求△ABC的面積,證明△ABC的面積與k、b無關(guān),只與h有關(guān).

查看答案和解析>>

科目: 來源: 題型:

定義在實(shí)數(shù)集上的函數(shù)f(x)=x2+x,g(x)=
1
3
x3-2x+m.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若f(x)≥g(x)對任意的x∈[-4,4]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)橢圓Γ1的中心和拋物線Γ2的頂點(diǎn)均為原點(diǎn)O,Γ1、Γ2的焦點(diǎn)均在x軸上,過Γ2的焦點(diǎn)F作直線l,與Γ2交于A、B兩點(diǎn),在Γ1、Γ2上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x3-24
3
y-2
3
0-4-
3
2
(1)求Γ1,Γ2的標(biāo)準(zhǔn)方程;
(2)若l與Γ1交于C、D兩點(diǎn),F(xiàn)0為Γ1的左焦點(diǎn),求
SF0AB
SF0CD
的最小值;
(3)點(diǎn)P、Q是Γ1上的兩點(diǎn),且OP⊥OQ,求證:
1
|OP|2
+
1
|OQ|2
為定值;反之,當(dāng)
1
|OP|2
+
1
|OQ|2
為此定值時(shí),OP⊥OQ是否成立?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案