相關習題
 0  211766  211774  211780  211784  211790  211792  211796  211802  211804  211810  211816  211820  211822  211826  211832  211834  211840  211844  211846  211850  211852  211856  211858  211860  211861  211862  211864  211865  211866  211868  211870  211874  211876  211880  211882  211886  211892  211894  211900  211904  211906  211910  211916  211922  211924  211930  211934  211936  211942  211946  211952  211960  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=(2
3
tan2x+1)cos2x+1-2sin2x,x∈[0,
π
2
].
(Ⅰ)求f(x)在[0,
π
2
]的單調區(qū)間;
(Ⅱ)若f(x)-m≥0對于任意x∈[0,
π
2
]恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目: 來源: 題型:

某射擊測試規(guī)則為:每人最多射擊3次,擊中目標即終止射擊,第i次射擊擊中目標得i(i=1,2,3)分,3次均擊中目標得0分.已知某射手每次擊中目標的概率為0.8,各次射擊結果互不影響.
(Ⅰ)求該射手至少射擊兩次并且擊中目標的概率;
(Ⅱ)記該射手的得分為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2cos2x+
3
sin2x,x∈R.
(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)圖象上所有點的橫坐標伸長為原來的2倍,縱坐標不變,得到的函數(shù)h(x)的圖象,再將函數(shù)h(x)的圖象向右平移
π
3
個單位后得到函數(shù)g(x)的圖象,求函數(shù)g(x)的解析式,并求在[0,π]上的值域.

查看答案和解析>>

科目: 來源: 題型:

持續(xù)性的霧霾天氣嚴重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一.為此,某城市實施了機動車尾號限行,該市報社調查組為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)請估計該市公眾對“車輛限行”的贊成率和被調查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記被選4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望;
(Ⅲ)若在這50名被調查者中隨機發(fā)出20份的調查問卷,記η為所發(fā)到的20人中贊成“車輛限行”的人數(shù),求使概率P(η=k)取得最大值的整數(shù)k.

查看答案和解析>>

科目: 來源: 題型:

已知cosα=-
3
5
,求sin
α
2
cos
α
2
,tan
α
2

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,點P到兩圓C1:x2+y2-2
3
y+2=0與C2:x2+y2+2
3
y-3=0的圓心的距離之和等于4,設點P的軌跡為C.
(1)求C的方程;
(2)設直線y=kx+1與C交于A,B兩點.問k為何值時
OA
OB
?

查看答案和解析>>

科目: 來源: 題型:

盒中裝有5個乒乓球用作比賽,其中2個是舊球,另外3個是新球,新球使用后即成為了舊球.
(Ⅰ)每次比賽從盒中隨機抽取1個球使用,使用后放回盒中,求第2次比賽結束后盒內剩余的新球數(shù)為2個的概率P;
(Ⅱ)每次比賽從盒中隨機抽取2個球使用,使用后放回盒中,設第2次比賽結束后盒內剩余的新球數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

已知一個正三棱錐的側面都是等腰直角三角形,側棱長為a,求內切球的體積.

查看答案和解析>>

科目: 來源: 題型:

已知定點F1(-
3
,0),F(xiàn)2
3
,0),動點R在曲線C上運動且保持|RF1|+|RF2|的值不變,曲線C過點T(0,1),
(Ⅰ)求曲線C的方程;
(Ⅱ)M是曲線C上一點,過點M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點,若A、B關于原點對稱,求k1•k2的值;
(Ⅲ)直線l過點F2,且與曲線C交于PQ,有如下命題p:“當直線l垂直于x軸時,△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

某中學高一女生共有450人,為了了解高一女生的身高情況,隨機抽取部分高一女生測量身高,所得數(shù)據整理后列出頻率分布表如下:
組別 頻數(shù) 頻率
145.5~149.5 8 0.16
149.5~153.5 6 0.12
153.5~157.5 14 0.28
157.5~161.5 10 0.20
161.5~165.5 8 0.16
165.5~169.5 m n
合計 M N
(1)求出表中字母m、n、M、N所對應的數(shù)值;
(2)在給出的直角坐標系中畫出頻率分布直方圖;
(3)估計該校高一女生身高在149.5~165.5cm范圍內有多少人?

查看答案和解析>>

同步練習冊答案