相關(guān)習(xí)題
 0  209024  209032  209038  209042  209048  209050  209054  209060  209062  209068  209074  209078  209080  209084  209090  209092  209098  209102  209104  209108  209110  209114  209116  209118  209119  209120  209122  209123  209124  209126  209128  209132  209134  209138  209140  209144  209150  209152  209158  209162  209164  209168  209174  209180  209182  209188  209192  209194  209200  209204  209210  209218  266669 

科目: 來(lái)源: 題型:

在四棱錐P-ABCD中,底面ABCD是平行四邊形,BD=4,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D為60°.
(1)求證:BC⊥BD;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)向量
a
=(1,sinθ),
b
=(2,cosθ),θ為銳角.
(1)若
a
b
=
7
3
,求sinθ+cosθ的值;
(2)若
a
b
,求sinθ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

若函數(shù)f(x)=x+
1
x
的值域?yàn)閇-2.5,-2],求f(x)的定義域.

查看答案和解析>>

科目: 來(lái)源: 題型:

解關(guān)于x的不等式:x2-5|x|+6<0.

查看答案和解析>>

科目: 來(lái)源: 題型:

若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱(chēng)數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿(mǎn)足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(1)求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若S63>2014,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

化簡(jiǎn):
(1)
sin(π-α)
cos(-α)tan(π+α)
;
(2)
cos(360°-α)tan(180°+α)
sin(180°-α)

查看答案和解析>>

科目: 來(lái)源: 題型:

在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,點(diǎn)P在棱DF上.
(Ⅰ)求證:AD⊥BF:
(Ⅱ)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;
(Ⅲ)若二面角D-AP-C的余弦值為
6
3
,求PF的長(zhǎng)度.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知α為第二象限角,f(α)=
sin(5π-α)sin(
3
2
π+α)cos(
3
2
π-α)tan(-α-π)
sin(3π+α)tan(π-α)sin(-
π
2
-α)

(1)化簡(jiǎn)f(α)
(2)若cos(α-
3
2
π)=
1
3
,求f(α)的值
(3)若α=-1380°,求f(α)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知某射擊隊(duì)員每次射擊擊中目標(biāo)靶的環(huán)數(shù)都在6環(huán)以上(含6環(huán)),據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制得到的頻率分布條形圖如圖所示,其中a,b,c依次構(gòu)成公差為0.1的等差數(shù)列,若視頻率為概率,且該隊(duì)員每次射擊相互獨(dú)立,試解答下列問(wèn)題:
(Ⅰ)求a,b,c的值,并求該隊(duì)員射擊一次,擊中目標(biāo)靶的環(huán)數(shù)ξ的分布列和數(shù)學(xué)期望Eξ;
(Ⅱ)若該射擊隊(duì)員在10次的射擊中,擊中9環(huán)以上(含9環(huán))的次數(shù)為k的概率為P(X=k),試探究:當(dāng)k為何值時(shí),P(X=k)取得最大值?

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點(diǎn).
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)求二面角C-BF-E的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案