相關(guān)習(xí)題
 0  208937  208945  208951  208955  208961  208963  208967  208973  208975  208981  208987  208991  208993  208997  209003  209005  209011  209015  209017  209021  209023  209027  209029  209031  209032  209033  209035  209036  209037  209039  209041  209045  209047  209051  209053  209057  209063  209065  209071  209075  209077  209081  209087  209093  209095  209101  209105  209107  209113  209117  209123  209131  266669 

科目: 來源: 題型:

一個四棱錐的三視圖和直觀圖如圖所示,E為側(cè)棱PD的中點.

(1)求證:PB∥平面AEC;
(2)求三棱錐E-ACD的體積.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
1
3
ax3+
1
2
bx2+cx+d(a,b,c,d為常數(shù)且a≠0),g(x)=f′(x)(f′(x)為f(x)的導(dǎo)數(shù)).
(Ⅰ)若g(x)滿足:①g′(0)>0;②對于任意實數(shù)x,都有g(shù)(x)≥0.求μ=
g(1)
g′(0)
的最小值;
(Ⅱ)若a=1且對于任意實數(shù)x∈(-∞,0)有f′(x)>0;對于任意實數(shù)x∈(0,4)有f′(x)<0.求b的取值范圍;
(Ⅲ)若a=1,b=-2e,討論關(guān)于x的方程lnx=x•g(x)的根的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,a],a>-2,其中e是自然對數(shù)的底數(shù).
(1)若a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求證:f(a)>
13
e2

(3)對于定義域為D的函數(shù)y=g(x),如果存在區(qū)間[m,n]⊆D,使得x∈[m,n]時,y=g(x)的值域是[m,n],則稱[m,n]是該函數(shù)y=g(x)的“保值區(qū)間”.設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),問函數(shù)y=h(x)是否存在“保值區(qū)間”?若存在,請求出一個“保值區(qū)間”; 若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=5sinxcosx-5
3
cos2x+
5
2
3
(x∈R),求:
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,
π
2
]時,函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

已知等差數(shù)列{an}滿足a2=-2,公差d=-1.
(Ⅰ)求數(shù)列{an}的通項公式an
(Ⅱ)設(shè)bn=an+2n-1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R).
(1)當(dāng)a=-
1
2
時,討論函數(shù)f(x)的單調(diào)性;
(2)在區(qū)間(1,2)內(nèi)任取兩個實數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,SD=AD=2,G是SB的中點.
(1)求證:AC⊥SB;
(2)求證:AB∥平面SCD;
(3)求AB與SC所成的角;
(4)求證:平面GAC⊥平面ABCD
(5)求三棱錐B-AGC的體積.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(-3,2),
b
=(2,1),
c
=(3,1),t∈R
(1)求|
a
-t
b
|的最小值及相應(yīng)的t的值;
(2)若
a
+t
b
c
共線,求t的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax2+3x+b(a<0,a、b∈R).設(shè)關(guān)于x的方程f(x)=0的兩個實根分別為α、β
(1)若|α-β|=1,求a、b的關(guān)系式;
(2)若a、b均為負(fù)整數(shù),且|α-β|=1,求f(x)的解析式;
(3)在(2)的條件下,若方程f(x)=(2m+2)x+2m+4至少有一個正根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線C1:2x2-y2=2m2(m>0),拋物線C2頂點在坐標(biāo)原點,焦點正好是雙曲線C1的左焦點F.問:是否存在過F且不垂直于x軸的直線l,使l與拋物線C2交于兩點P,Q,并且△POQ的面積為6,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案