相關(guān)習(xí)題
 0  200835  200843  200849  200853  200859  200861  200865  200871  200873  200879  200885  200889  200891  200895  200901  200903  200909  200913  200915  200919  200921  200925  200927  200929  200930  200931  200933  200934  200935  200937  200939  200943  200945  200949  200951  200955  200961  200963  200969  200973  200975  200979  200985  200991  200993  200999  201003  201005  201011  201015  201021  201029  266669 

科目: 來源: 題型:

有一個容量為200的樣本,其斜率分布直方圖如圖所示,樣本數(shù)據(jù)在[8,10)內(nèi)的頻數(shù)為
 

查看答案和解析>>

科目: 來源: 題型:

某市為考核一學(xué)校的教學(xué)質(zhì)量,對該校甲、乙兩班各50人進(jìn)行測驗,根據(jù)這兩班的成績繪制莖葉圖如圖所示:

(1)求甲、乙兩班成績的中位數(shù),并將甲乙兩班數(shù)據(jù)合在一起,繪出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)抽樣測驗,能否認(rèn)為該學(xué)校“教學(xué)成績不低于70分的學(xué)生至少占全體學(xué)生的80%”?
(3)根據(jù)莖葉圖,分析甲、乙兩班成績的特點.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=lgx-
1
x
的零點所在的區(qū)間為( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目: 來源: 題型:

假期間某班為了增強(qiáng)學(xué)生的社會實踐能力,把該班學(xué)生分成四個小組到一果園班果農(nóng)測量他們果樹的產(chǎn)量,某小組來到一片種子砂糖橘的山地,他們隨即選取20株作為樣本測量每一株的果實產(chǎn)量(單位:kg),獲得的數(shù)據(jù)按照區(qū)間(40,45],(45,50]、(50,55]、(55,60]進(jìn)行分組,得到如下頻率分布表,已知樣本產(chǎn)量在區(qū)間(45,50]上的果樹數(shù)量是產(chǎn)量在區(qū)間(50,60]上果樹株數(shù)的
4
3
倍           
分組(40,45](45,50](50,55](55,60]合計
頻率0.3a0.1bC
(1)分別求出a,b,c的值
(2)作出頻率分布直方圖
(3)根據(jù)頻率分布直方圖估計樣本平均數(shù)和中位數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知有一列數(shù):
1
2
,
2
3
,…,
n
n+1
,請設(shè)計一個算法,并畫出程序框圖,求該序列前100項的和.

查看答案和解析>>

科目: 來源: 題型:

設(shè)x,y滿足約束條件
2x-y≤2
2x-3y+6≥0
x≥0,y≥0
,則目標(biāo)函數(shù)z=x+y的最大值為
 

查看答案和解析>>

科目: 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
且z=2x+y的最大值和最小值分別為m和n,則m-n等于(  )
A、8B、7C、6D、5

查看答案和解析>>

科目: 來源: 題型:

已知AB是雙曲線
x2
a2
-
y2
b2
=1過左焦點F1的任意一條弦,以AB為直徑的圓被左準(zhǔn)線截得圓弧CD,求證:CD所對的圓心角的度數(shù)為定值.

查看答案和解析>>

科目: 來源: 題型:

某班主任對全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如表:
 認(rèn)為作業(yè)多認(rèn)為作業(yè)不多
喜歡玩電腦游戲1310
不喜歡玩電腦游戲720
為了檢驗“喜歡玩電腦游戲與認(rèn)為作業(yè)多”是否有關(guān)系,根據(jù)表中數(shù)據(jù),得到
k=
50(13×20-10×7)2
23×27×20×30
≈4.844對照臨界值表,有
 
的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)多”之間有相關(guān)關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,四棱錐P-ABCD的頂點B、D、P分別在空間直角坐標(biāo)系的坐標(biāo)軸上,頂點A與原點重合;底面ABCD中,AB⊥BC,且BC=PA=3,AD=y;三棱錐P-ABC的體積為5.
(Ⅰ)求面PDC的一個法向量(用y表示);
(Ⅱ)當(dāng)二面角C-PD-A為直二面角時,求PB與面PDC所成的角的正弦值;
(Ⅲ)當(dāng)二面角C-PD-A的余弦值為-
3
7
時,試探求AD的長.

查看答案和解析>>

同步練習(xí)冊答案