相關(guān)習(xí)題
 0  199985  199993  199999  200003  200009  200011  200015  200021  200023  200029  200035  200039  200041  200045  200051  200053  200059  200063  200065  200069  200071  200075  200077  200079  200080  200081  200083  200084  200085  200087  200089  200093  200095  200099  200101  200105  200111  200113  200119  200123  200125  200129  200135  200141  200143  200149  200153  200155  200161  200165  200171  200179  266669 

科目: 來(lái)源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,AC=AD=4,DE=2AB=6,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)若直線CD與平面ABED所成的角為
π
3
,∠CAD=
π
2
,求三棱錐B-AEF的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,其中sin2A=sin2B.
(1)若a=2,b=
3
,求△ABC的面積;
(2)若2bccosC=b2+c2-a2,求∠C.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E為棱DD1上的點(diǎn),F(xiàn)為AB的中點(diǎn),則三棱錐B1-BFE的體積為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖1,已知四邊形ABCD的對(duì)角線AC與BD互相垂直,∠A=60°,∠C=90°,CD=CB=2,將△ABD沿BD折起,得到三棱錐A′-BCD,如圖2.
(1)若二面角A′-BD-C的余弦值為
3
3
,求證:A′C⊥平面BCD;
(2)當(dāng)三棱錐A′-BCD的體積最大時(shí),求直線A′D與平面A′BC所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知:α,β是不同的平面,l,m,n是不同的直線,則下列說(shuō)法正確的是( 。
A、
l∥m
l⊥α
m∥β
⇒α⊥β
B、
l⊥m
m?α
⇒l⊥α
C、
l⊥m
l⊥n
m?α
n?α
?l⊥α
D、
l∥β
m∥β
l?α
m?α
⇒α∥β

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M∈AA1,N∈AB,∠C1MN=90°,B1N=2MN,則∠MNB1=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

質(zhì)點(diǎn)運(yùn)動(dòng)規(guī)律為s=t2-3,則在時(shí)間(3,3+△t)中相應(yīng)的平均速度為( 。
A、3B、6C、9D、12

查看答案和解析>>

科目: 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,n∈N*
(1)記函數(shù)F(x)=bf1(x)-lnf3(x),x∈(0,e],若F(x)的最小值為6,求實(shí)數(shù)b的值;
(2)對(duì)于(1)中的b,設(shè)函數(shù)g(x)=(
b
3
x,A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)g(x)圖象上兩點(diǎn),若g'(x0)=
y2-y1
x2-x1
,試證明x0<x2

查看答案和解析>>

科目: 來(lái)源: 題型:

在平面直角坐標(biāo)系x Oy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,直線l:x-my-1=0(m∈R)過(guò)橢圓C的右焦點(diǎn)F,且交橢圓C于 A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)D(
5
2
,0),連結(jié) BD,過(guò)點(diǎn) A作垂直于y軸的直線l1,設(shè)直線l1與直線 BD交于點(diǎn) P,試證明:點(diǎn) P的橫坐標(biāo)為4.

查看答案和解析>>

科目: 來(lái)源: 題型:

在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,且PD=AB.
(1)點(diǎn)M是PC的中點(diǎn),求證:PA∥平面MBD;
(2)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案