科目: 來源: 題型:解答題
已知拋物線E:y2= 4x,點P(2,O).如圖所示,直線.過點P且與拋物線E交于A(xl,y1)、B( x2,y2)兩點,直線過點P且與拋物線E交于C(x3, y3)、D(x4,y4)兩點.過點P作x軸的垂線,與線段AC和BD分別交于點M、N.
(I)求y1y2的值;
(Ⅱ)求訌:|PM|="|" PN|
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線(且為常數),為其焦點.
(1)寫出焦點的坐標;
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目: 來源: 題型:解答題
在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系曲線C的極坐標方程為cos()=1,M,N分別為C與x軸,y軸的交點。
(I)寫出C的直角坐標方程,并求M,N的極坐標;
(II)設MN的中點為P,求直線OP的極坐標方程。
查看答案和解析>>
科目: 來源: 題型:解答題
過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點、,過點C的直線與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(I)當直線過橢圓右焦點時,求線段CD的長;
(II)當點P異于點B時,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:的長軸長為,離心率.
Ⅰ)求橢圓C的標準方程;
Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(E在B,F之間),且OBE與OBF的面積之比為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知點是直角坐標平面內的動點,點到直線(是正常數)的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應的垂足分別為,求證=;
(3)記,,
(A、B、是(2)中的點),,求的值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓:的右焦點在圓上,直線交橢圓于、兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標原點),求的值;
(Ⅲ) 設點關于軸的對稱點為(與不重合),且直線與軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,離心率為,短軸長為4.
(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com