相關(guān)習(xí)題
 0  107746  107754  107760  107764  107770  107772  107776  107782  107784  107790  107796  107800  107802  107806  107812  107814  107820  107824  107826  107830  107832  107836  107838  107840  107841  107842  107844  107845  107846  107848  107850  107854  107856  107860  107862  107866  107872  107874  107880  107884  107886  107890  107896  107902  107904  107910  107914  107916  107922  107926  107932  107940  266669 

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,PE是⊙O的切線,E為切點(diǎn),PAB、PCD是割線,AB=35,CD=50,AC:DB=1:2,則PA=______.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,△BCD與△MCD都是邊長(zhǎng)為2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2
(1)求直線AM與平面BCD所成的角的大;
(2)求平面ACM與平面BCD所成的二面角的正弦值.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大。

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)證明:平面AB1C⊥平面A1BC1
(Ⅱ)設(shè)D是A1C1上的點(diǎn),且A1B∥平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD中點(diǎn)
(1)證明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高.
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)若,∠APB=∠ADB=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D為BB1的中點(diǎn),E為AB1上的一點(diǎn),AE=3EB1
(Ⅰ)證明:DE為異面直線AB1與CD的公垂線;
(Ⅱ)設(shè)異面直線AB1與CD的夾角為45°,求二面角A1-AC1-B1的大小.

查看答案和解析>>

科目: 來源:2010年高考數(shù)學(xué)試卷精編:9.3 空間角與距離(解析版) 題型:解答題

如圖,在五棱錐P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求直線PB與平面PCD所成角的大;
(Ⅲ)求四棱錐P-ACDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案