【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

50

60

70



(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測(cè)當(dāng)廣告費(fèi)支出為7百萬元時(shí)的銷售額.參考公式:.

【答案】
(1)解:


(2)解: = =5, = =50,

=60+160+250+360+560=1390, =4+16+25+36+64=145

∴b=7,a=15,=7x+15


(3)解:當(dāng)x=7時(shí),=7×7+15=64.即當(dāng)廣告費(fèi)支出為7百萬元時(shí)的銷售額為64(百萬元)
【解析】(1)直接根據(jù)表格數(shù)據(jù)作出散點(diǎn)圖即可;(2)可以觀察到這些點(diǎn)分布在一條直線附近,這樣可以計(jì)算出 , ,然后利用最小二乘法得解;(3)要預(yù)測(cè)當(dāng)廣告費(fèi)支出為7百萬元時(shí)的銷售額,只需將7代入x即可求出所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式的解集.

(2) 關(guān)于的不等式的解集是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)( ,0)成中心對(duì)稱(|φ|< ),那么函數(shù)f(x)圖象的一條對(duì)稱軸是(
A.x=﹣
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖表示的算法中,輸入三個(gè)實(shí)數(shù)a,b,c,要求輸出的x是這三個(gè)數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3+3x2+a(a為常數(shù)),在[﹣3,3]上有最小值3,那么在[﹣3,3]上f(x)的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α是空間中的一個(gè)平面,l,m,n是三條不同的直線,則下列命題中正確的是(
A.若mα,nα,l⊥m,l⊥n,則l⊥α
B.若mα,n⊥α,l⊥n,則l∥m
C.若l∥m,m⊥α,n⊥α,則l∥n
D.若l⊥m,l⊥n,則n∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無關(guān)的費(fèi)用是每小時(shí)96元,問此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = , = ,若k +3 平行,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)求函數(shù)f(x)=sin2x+cosx+1,x∈[﹣ , ]的值域.
(2)求函數(shù) 的定義域和單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案