【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由。

【答案】(1)0.30;(2)估計月用水量標(biāo)準(zhǔn)為2.9噸,85%的居民每月的用水量不超過標(biāo)準(zhǔn)

【解析】

1)利用頻率分直方圖中的矩形面積的和為1即可

2)先大體估計一下所在的區(qū)間,再根據(jù)區(qū)間的頻率之和為0.85,求解的值

1)由直方圖,可得 ,

解得.

2)因為前6組頻率之和為

而前5組的頻率之和為

所以.

解得.因此,估計月用水量標(biāo)準(zhǔn)為2.9噸,85%的居民每月的用水量不超過標(biāo)準(zhǔn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z滿足|z|z的實部大于0,z2的虛部為2.

1)求復(fù)數(shù)z;

2)設(shè)復(fù)數(shù)z,z2,zz2之在復(fù)平面上對應(yīng)的點分別為AB,C,求(的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某圓的極坐標(biāo)方程為,

(1)圓的普通方程和參數(shù)方程

(2)圓上所有點的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,已知曲線C為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,

(1)求曲線C的極坐標(biāo)方程,若A,B為曲線C上的兩點,證明當(dāng)時,定值;

(2)若過點且傾斜角為的直線l與曲線C相交于AB兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我省某校要進行一次月考,一般考生必須考5門學(xué)科,其中語、數(shù)、英、綜合這四科是必考科目,另外一門在物理、化學(xué)、政治、歷史、生物、地理、英語2中選擇.為節(jié)省時間,決定每天上午考兩門,下午考一門學(xué)科,三天半考完.

1)若語、數(shù)、英、綜合四門學(xué)科安排在上午第一場考試,則考試日程安排表有多少種不同的安排方法;

2)如果各科考試順序不受限制;求數(shù)學(xué)、化學(xué)在同一天考的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時,.

1)當(dāng)時,求的表達式:

2)求在區(qū)間的最大值的表達式;

3)當(dāng)時,若關(guān)于x的方程a)恰有10個不同實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有15個省三好學(xué)生名額分給12、3、4共四個班級,其中1班至少2個名額,2班、4班每班至少3個名額,3班最多2個名額,則共有_________種不同分配方案.

查看答案和解析>>

同步練習(xí)冊答案