橢圓的長軸為,短軸為,將橢圓沿y軸折成一個二面角,使得點在平面上的射影恰好為橢圓的右焦點,則該二面角的大小為(  。.
A.75°B.60°  C.45°D.30°
B

試題分析:易知。易得為二面角的一個平面角,在Rt,中,,所以二面角的大小為60°。
點評:二面角求解的一般步驟: 一、“找”:找出圖形中二面角,若不能直接找到可以通過作輔助線補全圖形找二面角的平面角。 二、“證”:證明所找出的角就是該二面角的平面角。三、“算”:計算出該平面角。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,在四棱錐中,底面是正方形.已知.

(Ⅰ)求證:;
(Ⅱ)求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l垂直平面a,垂足為O.在矩形ABCD中AD=1,AB=2,若點A在l上移動,點 B在平面a上移動,則O、D兩點間的最大距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)三棱錐中,,,

(Ⅰ)求證:平面平面
(Ⅱ)若,且異面直線的夾角為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在中,邊上的高,,,沿翻折,使得,得到幾何體。

(1)求證:;
(2)求與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是兩條不同的直線,、是兩個不同的平面,則下列命題中不正確的是(     )
A.若,,則
B.若,則
C.若,則
D.若、所成的角相等,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果對于空間任意n(n≥2)條直線總存在一個平面α,使得這n條直線與平面α所成的角均相等,那么這樣的n(  )
A.最大值為3B.最大值為4 C.最大值為5D.不存在最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線及平面,它們具備下列哪組條件時,有成立(  )
A.B.
C.所成的角相等D.

查看答案和解析>>

同步練習冊答案